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ABSTRACT 

We present an energy harvester for environments that 
rotate through the earth’s gravitational field.  Example 
applications include shafts connected to motors, axles, 
propellers, fans, and wheels or tires.  Our approach makes 
use of the unique dynamics of an offset pendulum along 
with a nonlinear bi-stable restoring spring to improve the 
operational bandwidth of the system.  We apply our 
approach to a tire pressure monitoring system (TPMS) 
that is mounted on a car rim.  Simulation and 
experimental test results show that the prototype generator 
is capable of directly powering an RF transmission every 
60 seconds or less over a speed range of 6 to 95 mph. 
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INTRODUCTION 

The ability to harvest or scavenge energy from a 
wireless sensor’s operating environment can enable many 
sensing applications in which regularly replacing or 
recharging batteries is either not possible or expensive 
[1][2].  Many potential sources of energy have been 
studied, including vibrations [3], temperature gradients 
[4], and human motion [5].  Harvesting energy from a 
rotating environment (i.e. rotating machinery, wheels, 
shafts, propellers, etc.) may be considered a subset of 
vibration energy harvesting, but has unique dynamics that 
benefit from different solutions.  A tire pressure 
monitoring systems (TPMS) is a good example of an 
application in which energy harvesting from a rotating 
environment is beneficial.  TPMS modules are mounted 
on the car rim, attached to inside of the valve stem.  The 
system is subjected to a +/- 1G excitation at the rolling 
frequency as the wheel rotates through the earth’s 
gravitational field.  (See Figure 1). 

Most vibration energy harvesting systems operate 
effectively only at resonance. Thus, for both linear and 
rotational systems, the narrow operating bandwidth is a 
chief limitation.  The following three main approaches to 
improving the bandwidth are the subjects of current 
research efforts: tuning the resonance frequency of the 
harvester during operation [6][7], implementing multi-
mode oscillators [8], and employing non-linear oscillators 
to widen the bandwidth [9].  These methods are equally 
applicable to rotational systems.  Gu and Livermore [10] 
have used the dynamics of an offset pendulum in order to 
increase the harvester bandwidth for rotational systems. 

In this study we present the analysis, implementation, 
and test results for an approach to harvesting energy from 
a rotating environment.  While we specifically apply our 
design to the TPMS application, it is applicable to any 
rotating environment in which the axis of rotation is more 

or less parallel to the earth’s surface (i.e. horizontal).    
Like Gu and Livermore [10], our approach takes 
advantage of the unique features of the dynamics of an 
offset pendulum to create an inherently broad frequency 
response.  In addition, it contains many unique features 
that enable efficient power harvesting under the realistic 
constraints of a TPMS system, and many rotational 
systems in which the harvester must be small compared to 
the rotation radius.  Finally, our system incorporates a 
nonlinear bi-stable oscillatory motion to further enhance 
the bandwidth.   

The remainder of this paper is organized as follows.  
We first present modeling and analysis of the key 
dynamic effects that we are exploiting.  We then discuss 
the details of the prototype design.  And finally, we 
present and discuss the experimental results. 

 

 
 

Figure 1.  Illustration of TPMS module mounted to a rim.  
Directions of tangential (At) and radial (Ar) acceleration 
shown along with representative time traces for these two 
signals. 

 
OFFSET PENDULUM DYNAMICS  

Figure 2 shows an offset pendulum system mounted 
on a rotating cylinder or wheel.  If the angle (θ) is small, 
the centripetal acceleration acts like a linear spring 
bringing the proof mass back to the center (θ = 0).  The 
effective resonance of this pendulum system is given by 
equation 1.  If distance of the pendulum from the center of 
rotation (L1) is equal to the length of the pendulum (L2), 
the resonance will always equal the rotating frequency 
(Ω).  A proof mass moving in a curved track whose radius 
of curvature is one half the primary rotation radius 
exhibits the same behavior as an offset pendulum.  Note 
that this analysis assumes the proof mass is a point mass. 

 ߱݊ = Ωඨ2ܮ1ܮ 

                        

(1)

 
In our target application, the radius is large, and the 

system operates at relatively low frequencies.  Thus the 
displacement of the proof mass, if unconstrained, will be 
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quite large.  Equation 1 only applies under the small angle 
approximation.  Furthermore, in a practical system, the 
proof mass displacement must be constrained.  Figure 3 
illustrates the limits of both the small angle approximation 
and practical displacement limits for a standard car rim 
and tire.  If the displacement is large enough to reach the 
end stops (4mm in Figure 3), the system is no longer a 
freely oscillating resonant structure, so any resonance 
frequency error associated with the small angle 
approximation is not relevant.  From Figure 3, the error at 
a displacement limit of +/- 4mm is less than 0.01%.  In 
fact the displacements could be much larger before 
significant errors (> 1%) occur. 

 

 
Figure 2: Illustration of an eccentrically mounted 
pendulum on rotating wheel or shaft.  The centripetal 
acceleration on the proof mass acts like a linear spring as 
long as θ is small. 
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Figure 3. Proof mass displacement amplitude and error 
resulting from the small angle approximation vs. rolling 
frequency and speed.  A rim diameter of 15 inches 
(38cm), and a tire rolling diameter of 20 inches (51 cm) 
was assumed.  Limit stop is at a 4mm displacement. 

 
PROTOTYPE DESIGN AND DISCUSSION 

A few practical application related constraints drove 
many of the design implementation decisions. First, the 
system must generate enough power to support 
transmissions once per minute even at very slow speeds 
(~ 10 mph).  This constraint necessitates relatively large 
allowable displacements (~ +/- 2.5 mm).  Second, the 
height (i.e. size in the radial direction) must be small 
because of tire and rim geometry, which rules out a 
cantilever structure extending in the radial direction or an 
actual pendulum as shown in Figure 2.   

An illustration of the solution employed is shown in 
Figure 4.  We implemented a curved track with a radius 
smaller than the rim radius to implement the offset 
pendulum dynamics.  The proof mass is a steel ball 
bearing that rolls back and forth along the curved track.  
This system can withstand the very large static centripetal 
load while still maintaining low friction motion in the 
tangential direction.  In order to improve the harvesting of 
energy at low rotating frequencies, we employed spring 
loaded end stops.   

The transducers are two piezoelectric beams running 
along the length of the track, one on each side.  The beam 
and proof mass make contact through a smaller ball held 
in a conical hole along the side of the track.  As the proof 
mass rolls past the smaller ball, the smaller ball gets 
pushed out and deflects the piezoelectric beam.  This 
process is illustrated in Figure 5.  For clarity, Figure 5 
shows only one piezoelectric beam.  There are two 
piezoelectric actuation cycles per tire revolution per beam. 

 
Figure 4: Illustration of energy harvester concept. 

 

 
Figure 5:   Illustration of piezoelectric beam actuation.  
When proof mass ball is in the position on the left or right 
(shown in red) the piezoelectric beam is undeflected.  
When the proof mass ball is in the center position (shown 
in green), the piezoelectric beam is deflected. 

We decided to use piezoelectric rather than 
electromagnetic transduction because at low frequencies 
the voltage from the electromagnetic system would be 
very low and require more complex power electronics.  
As piezoelectric devices are generally stiff, they are best 
actuated in a high force, low displacement mode.  The 
mechanical actuation system shown in Figure 5 is 
essentially a force amplification mechanism, so the lower 
force, higher displacement motion of the proof mass is 
converted to a higher force, lower displacement motion 
for the piezoelectric beam.  A second benefit of the 
actuation system shown is that it is inherently immune to 
reliability concerns from over-travel. 

The interaction of the proof mass with the 
piezoelectric beams as well as with the spring loaded end 
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stops alters the effective spring constant of the system.  
Figure 6 shows the effective spring force on the proof 
mass at very slow speeds (i.e. neglecting the effect of the 
centripetal acceleration).  The location of the spring 
loaded end stops is clearly indicated.  Throughout most of 
the proof mass motion, there is a negative spring constant, 
meaning that the spring force pushes the proof mass away 
from the zero displacement point.  The gravitational force 
on the proof mass is also shown for the case where the 
tangential axis is aligned with gravity.  This shows that 
the gravitational force is strong enough to push the proof 
mass through its entire range of motion at low speed.  The 
system results in a double well potential function (see 
Figure 7) that is characteristic of bi-stable oscillators.  As 
the speed increases, the effective stiffness from the 
centripetal acceleration increases, which changes the 
shape of the potential function.  At high speeds, the 
potential function becomes more and more like that of a 
standard linear spring as the effect of the centripetal 
acceleration dominates over the restoring force from the 
proof mass interaction with the piezoelectric beam. 
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Figure 6.  Effective spring (restoring) force and 
gravitational force on the proof mass over its range of 
motion.  Gravitational force assumes the tangential axis is 
aligned to gravity. 
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Figure 7:  Shape of the nonlinear potential function.  
Three speeds shown: near 0 mph (very slow), 18mph, and 
36 mph. At high speeds the potential function approaches 
that of a standard linear spring. 

 
RESULTS 

Given the extra forces from the interaction with the 
piezoelectric beam and the spring loaded end stops, the 
system is no longer always resonant as implied by Figure 
2 and equation 1.  However, the bandwidth of the device 

is still significantly enhanced compared to a simple linear 
oscillator.  Figure 8 shows the simulated rms voltage 
across a matched resistor and the power output vs. 
frequency.  We use the convergence to an average power 
( P̂ ), given by equation 2, as the appropriate metric for 
this nonlinear system. At each frequency, the system 
simulation is allowed to run for a sufficient number of 
forcing periods such that any transients die out, then 
equation 2 is applied over k periods to get an average 
power generation value.  

∫=
kT

L

dt
R
tV

kT
P

0

2)(1ˆ                           (2) 

where k is the number of forcing periods, T = 2π/Ω is the 
period of the forcing oscillation, V(t) is the generated 
voltage, and RL is the load resistance. 

 
The simulated output shown in Figure 8 indicates that 

the proof mass motion, and thus power output, drop 
dramatically at about 100 mph.  The simulation models 
both viscous and coulomb friction.  At very high speeds 
the displacements naturally go down, and the coulomb 
friction goes up.  At around 100 mph, the friction 
overwhelms the motion of the system. 
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Figure 8:  Simulated output voltage and  power versus 
rotation frequency.  Piezoelectric generator is terminated 
with a matched resistor. 

 

 
Figure 9. Prototype device used for road testing. 

 
Several prototypes based on this concept were built 

and tested.  One example is shown in Figure 9.  The 
harvester output was measured via an optimally sized 
resistor terminating the piezoelectric beam.  Figure 11 
shows the voltage output across the load resistor 
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measured during road tests.  The measured voltage is a 
little lower in magnitude and the pulse is narrower than 
the simulated voltage.  These facts are probably indicative 
of an assembly tolerance issue such that there is a small 
gap between the piezoelectric beam and the actuator ball 
placed in the conical hole (see Figure 5) when the proof 
mass is at one end or the other. 

 

0

5

10

15

20

0 0.5 1 1.5

vo
lts

seconds

Measurement

Simulation

 
Figure 10.  Simulated and measured open circuit voltage 
output.  Tire is rolling at 10 mph. 

 
The prototype was also used to power a wireless tire 

pressure monitoring system.  Figure 11 shows the results 
of road tests performed with this system.  The system 
performs well from speeds of 10 mph to 95 mph.  The 
slow speed performance is particularly impressive and the 
system can support more than one transmission per 
minute down to speeds of 6 mph.  At high speeds, above 
95 mph, the increased rolling friction overcomes the 
inertial forces the time between transmissions climbs 
rapidly. 
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Figure 11:  Experimental data showing the time between 
TPMS transmissions for a rim mounted energy harvester.  
Data shown for multiple tests on three different devices. 

 
CONCLUSIONS 

We have demonstrated an energy harvester for a 
rotating environment in which the axis of rotation is 
horizontal.  The solution makes use of the dynamics of an 
offset pendulum to increase the operational bandwidth.  
The combination of restoring forces acting on the system, 
including centripetal acceleration and restoring forces of 
the piezoelectric beams, creates a nonlinear bi-stable 
oscillator.  The frequency response of the system is 
significantly broader than a standard linear oscillator 

system.  The system was applied to a tire pressure 
monitoring system and was able to support better than one 
transmission per minute in the speed range of 6 to 95 
mph, and more than 3 transmissions per minute from 20 
to 95 mph. 
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