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ABSTRACT 
 This paper introduces a novel vibration energy 
harvesting structure with a resonance frequency that is tunable 
over a large range using a simple compact mechanical 
adjustment that alters the structural stiffness. The frequency 
tuning requires minimal actuation that can be “turned off” 
while maintaining the new resonance frequency. Testing shows 
that the natural frequency can be adjusted from 32 Hz to 85 Hz. 
The structure is coupled with an electromagnetic transducer to 
generate power.  Test results at varying excitation frequencies 
and amplitudes demonstrate tunable power generation over a 
very wide bandwidth.   In addition to frequency tunability, the 
structure is a nonlinear softening spring, which provides the 
added benefit of a passively wider bandwidth for specific 
ranges of the design parameters.  

 
INTRODUCTION 
 There is a growing need in our highly technological 
world of smart structures and smart environments to know the 
states of complex systems. To gather this information an array 
of sensors nodes must be used. These network nodes have 
applications in manufacturing, robotics, medical and structural 
monitoring. For certain applications it is beneficial for these 
wireless nodes to use ambient energy such as solar, thermal 
gradients, or mechanical. Recently, harvesting ambient 
mechanical energy in the form of vibrations has been the center 
of much research [1-17]. The most common structure used is a 
linear resonant harvester. These structures have an intrinsic 
tradeoff between efficiency and bandwidth; namely, as the 
quality factor of the device is raised and mechanical damping 
lowered, the half power bandwidth becomes extremely narrow. 
This is problematic when the excitation frequency drifts or 
slight changes to the structure from environmental conditions 
or manufacturing tolerances cause alterations in its resonance 
frequency. To overcome this limitation several novel ideas have 
been presented. These include introducing multiple vibration 
modes [1], tuning the resonance frequency of the harvester to 

match the input frequency [2], and introducing nonlinearities 
into the system [3,6,12,13,14,17]. 
 Many techniques and technologies have been 
implemented in order to control the fundamental frequency of 
resonant structures. Peters et. al. implemented a design with 
piezoelectric actuators that adjusts the spring stiffness by 
altering the geometry of the system. This method was able to 
adjust the resonance frequency from 66 to 89 Hz [2]. Work by 
Eichhorn et. al. and others have applied axial loads to cantilever 
beams in order to alter the frequency. Using this method 
Eichhorn et. al. was able to adjust the frequency from 150Hz to 
215Hz [4,16,17]. A more complete overview detailing recent 
advancements in frequency tuning is presented in    Table 1.   
 These different approaches each have their merits in 
different vibration environments. It stands to reason that for a 
fixed frequency harmonic input, a matched linear harvester will 
perform well.  It has been shown through numerical simulation 
by Hoffman et. al. that for band-limited white noise and 
harmonic frequency sweeps a nonlinear mono-stable and bi-
stable system will outperform an optimized linear system [5]. 
Futhermore, it has been shown that for pure Gaussian white 
noise, nonlinearity is not a determining factor in power 
generation [6].  Most vibration sources are neither single fixed 
frequency sources nor pure Gaussian white noise.  In many real 
scenarios the characteristics of the input vibration frequency 
changes in time.  Nonlinear structures can improve the 
robustness of harvesters in these situations [6].  However, 
active (or semi-active) tuning employed in conjunction with 
nonlinear structures has the potential to further expand the 
operation range of a vibration energy harvester.  

In this paper a novel tunable energy harvesting 
structure is introduced. The structure is tunable over a wide 
frequency range using minimal actuation, and consumes no 
power to remain at the new resonant value. This device is 
suitable for vibration spectra that contain a single dominant 
frequency that drifts in a known region. The values of the 
tunable range as well as the actuation required for this device 
compare well with similar recent published work.  
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Reference Author Actuation 
Range 

Low 
Frequency 

[Hz] 

High 
Frequency 

[Hz] 

Mean 
Frequency 

[Hz]  

Tuning 
Range Tuning Gain 

[2] Chistian Peters et. al. 10 V 66 89 78 ±15% 2.3 Hz/V 
[7] Shyh-Chin Huang et. al. 35 mm 85.1 167 126 ±32% 2.3 Hz/mm 
[4] C. Elchhorn et. al. 70 V 150 215 183 ±18% 0.9 Hz/V 
[8] Ivo N. Ayala et. al. 2 mm 64 78 71 ±10% 7.0 Hz/mm 
[9] Vinod R. Challa et. al. N/A 22 32 27 ±19% N/A 

[10] Mohamed O. Mansour et. 
al. 54 mm 3.19 12 8 ±58% 0.2 Hz/mm 

 This Work 5 mm 32 85 58 ±45% 10.4 Hz/mm 
Table 1. Comparison of tunable energy harvester presented in this paper to recent comparable published works.  

 

STRUCTURE DESCRIPTION AND FABRICATION 
The complete structure as detailed in Fig. 1 is made up 

of three subsystems: the spring structure, the control structure, 
and the electromagnetic generator.  

 

 
Figure 1. A photograph detailing the components of the 
system.  

 
 The innovation of this vibration energy harvester is 

the “wishbone” spring design shown in Fig. 2. The wishbone is 
constructed of two cantilever beams in parallel. The free ends 
of the beams are rigidly attached to each other and a proof 
mass. The fixed ends are clamped to the control structure. As 
the distance, d, between the beams increases, a component of 
the inertial force from the proof mass is transferred as an axial 
force through the spring. This effectively increases the stiffness 
of the spring structure as   is increased. In implementation two 
of these wishbone springs have been placed in parallel to 
accommodate the electromagnetic generator. 

 

 
 

Figure 2. The wishbone spring configuration constructed of 
two cantilever beams in parallel. 

 
The control structure tunes the resonance frequency of 

the spring structure by adjusting the separation distance   
between the two beams. The test setup uses a dovetail slide to 
control d.  This gives an adjustment resolution better than 
.0254mm (0.001”). 

The electromagnetic generator is used to transform the 
vibrational mechanical energy into electrical energy. The 
generator consists of a square coil between two sets of N52 
Neodymium magnets. The electromagnetic generator is shown 
in Fig. 3. The springs were constructed using 0.004” thick low 
carbon steel. This was chosen to accommodate the tight 
bending radiuses required. Adhesive was used to connect the 
free end of the two beams to each other and the proof mass. The 
electromagnetic generator housing was constructed on a 3D 
printer. These generator parts consist of a spool of wire 
mounted on a bracket with the ability to be re-centered in the 
proof mass as   is varied.  
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Figure 3. The proof mass is comprised of four 6.35mm cube 
N-52 Neodymium permanent magnets. The magnets are 
positioned such that the flux between the lower magnets is 
180 degrees out of phase with the upper magnets. 
Dimensions are in mm. 
 
THEORY AND MODELING 

The system is modeled by the standard second order 
mass spring damper equation subjected to base excitation as in 
(1). 

 
                                                          (1) 

 
Were m is the proof mass, ce is the electrical damping 

coefficient from power generation, cm is the mechanical viscous 
damping coefficient, and k(d) is the spring constant of the 
wishbone spring structure, as function of d. 

The equation as shown in (1) has the implicit 
assumption of a linear transducer whose electromagnetic force 
is directly proportional to the relative velocity of the proof 
mass,      . This assumes that the magnetic flux density 
between the top two magnets of the proof mass is uniform and 
that the magnetic flux density between the bottom two magnets 
is equal in magnitude and opposite in direction as shown in Fig. 
3. The assumption holds with the caveat that the relative 
displacement of the proof mass,     , must not exceed half the 
height of the generator coils. The electrical damping coefficient 
can then be calculated as in (2). 

 

   
       

 
                             (2) 

 
 Where B is the magnitude of the uniform magnetic 
flux density, h is the height of the square coil, N is the number 
of turns of the square coil, and R is the sum of the load 
resistance and coil resistance.  

For a first order design of the electromagnetic 
generator, a mechanical damping ratio was estimated and the 
desired electrical damping ratio was set to match it. The coil 
plus load resistance was then calculated in terms of N and h as 
in (3), where   is the resistivity and    is the cross sectional 
area of the magnet wire. Substituting (3) into (2), the optimal N 
was then calculated as shown in (4).  
 
 

     
    

  
                             (3) 

 

  
        

        
                                          (4) 

 
FEA simulations using FEMM yielded the flux 

through the square coil as a function of relative coil 
displacement,     , and is shown in Fig. 5. Numerical results 
yield a maximum flux density of 0.6 T, which are in close 
agreement to the measured flux density of 0.58 T.  The linear 
regression line fit of the flux plot demonstrates the limits of the 
linear transducer assumption described above. For this device, 
the expression     is equal to               if the relative 
displacement of the proof mass does not exceed      . 

The peak power generated from the linear transducer 
modeled in (1) is given in (5) [11], where     is the electrical 
damping ratio,    is the total damping ratio defined in (6),    is 
the mechanical damping ratio, A is the peak excitation 
acceleration, and r is the frequency ratio defined as         
with   as the excitation frequency and    as the natural 
frequency of the mass spring system. Equation (5) assumes that 
the generated power is equal to the power dissipated through 
the electrical damper. If the system is operating at resonance, 
(5) may be simplified as (7). 

 

    
     

   

                
                             (5) 

 
                                       (6) 
 

    
    

 

    
                                            (7) 

 
From initial test data and characterization of the spring 

structure,      is known to be a mono-stable softening spring. 
The standard form for this spring type will be used and is 
shown in (8). 

 
           

        
                                  (8) 

 
Where       and       are positive coefficients and and       
is a negative coefficient.     
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Figure 5. Top, FEM simulation of the flux density for the 
arrangement of the magnets. Numerical results of 0.6 T are 
in close agreement to the measured flux density of 0.58 T. 
Bottom, Flux through the area enclosed by the generator 
coils as a function of z. Notice that the system can be 
approximated as linear through a small displacement region 
of ~ ±2 mm. 
 

 

EXPERIMENTAL METHODS 
The system was empirically characterized to determine 

the stiffness of the spring structure as the distance   was 
adjusted. The force versus displacement as a function of the 
separation of the spring bases ( ) was tested on an Instron. The 
data was collected for values of   ranging from 0 – 5mm (0 – 
0.2”) by 0.5mm (0.020”) increments and is shown in Fig 6.  
During the testing the system was firmly secured and the load 
cell contacted at the center of the proof mass.  
 The dynamic response of the system was  
characterized by subjecting the device to a series of harmonic 
sweeps. These experiments were carried out using a Labworks 
shaker system. A laser vibrometer was used to measure the 

response of the proof mass. The system was controlled using 
Labview and closed loop feedback control to hold the peak 
acceleration constant through the entire frequency sweep. 
 The velocity signal from the laser vibrometer was 
differentiated and filtered to get the absolute acceleration of the 
proof mass. This acceleration signal was then divided by the 
signal from the accelerometer attached to the base of the system 
in order to get the system’s dynamic response. Harmonic 
sweeps where performed from 20-100 Hz at various values of 
the base excitation and distances  . The acceleration values 
ranged from 0.2 – 0.5G at 0.1G intervals, and the base distance 
  ranged from 0 – 5mm (0 – 0.200”) by 0.5mm (0.020”) 
intervals. For large acceleration values the harmonic sweeps 
were not performed for small values of   due to physical 
constraints of the system. At the large acceleration values the 
displacement of the proof mass would be great enough to cause 
yielding of the spring material. Harmonic down sweeps at 
corresponding values of acceleration and   were also 
performed to demonstrate the nonlinearity of the spring 
structure.   
 The mechanical damping coefficient was empirically 
determined for the system. This was accomplished by giving 
the proof mass a set initial displacement and measuring the 
response with the laser vibrometer with no electrical load. This 
was done at 1mm (0.04”) increments of  . This same test was 
carried out with two load resistances, 56 Ohms, the measured 
resistance of the coils, and 1000 Ohms. This data can then be 
used to determine the electrical damping of the system. 
 The voltage produced from the electromagnetic 
generator was recorded in order to verify the data from the laser 
vibrometer and to calculate the power generated. This voltage 
was measured across a resistor of equal value to the resistance 
of the coil windings.  
 

RESULTS AND DISCUSSIONS 
The results from the Instron testing show a dramatic 

increase in stiffness as   is increased. For large base separation 
(d) values, the stiffness becomes increasingly nonlinear. For 
large displacements the spring structure behaves as a softening 
spring. This effect is likely due to the lower, or inside beam, 
buckling as the tip is displaced downwards. 
 The Matlab™ curvefit toolbox was used to determine 
the coefficients of (8) as a function of  .  
 
                                     (13) 
                                     (14) 
                                             (15) 
 
 These equations show the global relationship of the of 
the spring structures stiffness as a function of  .  
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Figure 6. Results of the Instron testing. Used to obtain 
empirical force versus displacement plots of the spring 
structure for varying values of d. 
 
 
 
 

 
Figure 7. Curve fit models for select values of d.  
 

For each harmonic frequency sweep the resonance 
frequency was recorded. For large acceleration values and 
separation distances d, where the spring structure behaves as a 
nonlinear softening spring, the frequency at which the peak 
voltage was recorded is used as the resonance frequency. Figure 
8 shows the resonance frequency versus base separation (d) for 
all excitation acceleration values tested. Figure 9 shows the 
average resonance frequency for all the acceleration values. 
 

Figure 8. The resonance frequency for each tested value of 
base excitation acceleration, and separation of the spring 
bases d. 
  
  
 
 

 
 
Figure 9. The Average resonance frequency of the system for all 
acceleration values as a function of the spring base separation.  
 
 The lowest average frequency, when the two beams 
are parallel is 32 Hz. With the bases of the springs displaced 
5mm (0.200”) the average resonance frequency increased to 85 
Hz. This gives a median value for the resonance frequency of 
59 Hz with a tuning range of ±45 percent. As is evident in Fig. 
8 and Fig. 9, the system response changes much more 
drastically for lower values of d. For the first 2.5mm (0.100”) 
of adjustment the system’s resonance frequency increases by 
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approximately 140 percent from 32 Hz to 76 Hz. When the 
distance   is increased further, from 2.5mm (0.100”) to 5mm 
(0.200”) the system only increases an additional 28 percent; to 
165 percent above the base frequency. The lower region of 
values of   is also where the system behaves as a linear spring.   
 For relatively large accelerations and base separations 
the spring structure behaves as a softening spring. Harmonic 
sweeps were run in both directions to demonstrate the dynamic 
response of the system. A prototypical response to these inputs 
is shown in Fig. 10. From the upward sweeps the response stays 
at the lower solution, and then suddenly jumps to the upper 
solution at high frequency. With the downward sweeps the 
response stays in the upper solution for a larger frequency 
range. 
  
 

 
Figure 10. Harmonic sweeps from 20-100 Hz (light) and 
100-20 Hz (dark) for accelerations of 500mG and a base 
separation of 3mm (0.120”).  
 
 
 Figure 11 shows the resonance frequency versus base 
separation for two down sweeps.  Compare this to the data in 
Fig. 8 for the up sweeps.  For 0.2 G (the lower excitation value) 
the frequencies are nearly identical for up and down sweep.  In 
other words, the system behaves linearly.  However, for large 
excitation values, the resonance (or peak) frequency is different 
for the up and down sweeps indicating nonlinearity. 
 

 
Figure 11. Resonance frequency response of the system to 
downward harmonic sweeps. 
 
 The mechanical quality factor, equal to          , 
was calculated from the response of the proof mass using the 
log decrement. It was found that for a zero value of   the 
quality factor of the system was quite low. This is due to the 
fact that at large displacement and low base separation the two 
beams contact each other. When the base separation was 
increased to a range of 1 - 3mm (.04” - .12”) the quality factor 
rose to a near constant value. When   was further increased the 
quality factor greatly rose.  The authors believe that this is due 
to a new vibration mode being introduced. 
 

 
Figure 12. Mechanical quality factor of the system as a 
function of the base separation    
 
 By measuring the voltage across the load resistor the 
peak output power of the generator was calculated. This was 
done for each value of  . The peak power output at the 200mG 
level for the harmonic upsweeps was found to be 340 μW for a 
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base separation distance of zero. The power output slowly 
decreased until the mechanical quality factor rose to a level 
comparable to the quality factor of the electrical damping at 
high values of  . This general trend holds for all the upsweeps 
tested and is shown in Fig. 13.  
 

 
Figure 13. Peak power output of harmonic upsweeps for all 
tested values of base separation and acceleration. 
 

For small input accelerations, the power versus base 
separation is similar for up sweeps and down sweeps as would 
be expected (see Fig. 14).  However, for large acceleration 
values, the output power is much larger on the down sweep.  
This follows from the nonlinear softening behavior as shown in 
Fig. 10.  Also, as is clear in Fig. 14, the output power is not a 
strong function of the base separation for larger input 
accelerations.  

 

 Figure 14. Max power output for harmonic down sweeps.  
   

CONCLUSION AND FUTURE WORK 
 This paper has shown a tunable vibration energy 
harvester capable of adjusting the resonance frequency over a 
large range with minimal actuation. The spring structure of the 
device was characterized statically and dynamically using 
harmonic frequency sweeps. The results from both of these 
tests showed that the system behaves as a nonlinear softening 
spring for large separation values   and base excitations. 
 Further work should be carried out on characterizing 
the relationships between design parameters, such as length and 
thickness of the beam. This would allow for an optimization of 
parameters in the construction of a system built for harvesting 
energy from a known vibration spectrum. 
 An investigation into a low power consumption 
actuator to control the base separation   could also be made. 
This coupled with an optimal closed loop controller could lead 
to an energy efficient autonomous vibration energy harvester. 
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