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Abstract

We present an energy harvester for environments that rotate through the Earth’s gravitational
field. Example applications include shafts connected to motors, axles, propellers, fans, and
wheels or tires. Our approach uses the unique dynamics of an offset pendulum along with a
nonlinear bistable restoring spring to improve the operational bandwidth of the system.
Depending on the speed of the rotating environment, the system can act as a bistable oscillator,
monostable stiffening oscillator, or linear oscillator. We apply our approach to a tire pressure
monitoring system mounted on a car rim. Simulation and experimental test results show that the
prototype generator is capable of directly powering an RF transmission every 60 s or less over a

speed range of 10 to 155 kph.

Keywords: energy harvesting, wideband harvesting, nonlinear dynamics, tire pressure

monitoring

1. Introduction

The ability to harvest or scavenge energy from a wireless
sensor’s operating environment can facilitate many sensing
applications in which regular replacement or recharging of
batteries is either not possible or expensive [1, 2]. Many
potential energy sources have been studied, including vibra-
tions [3], temperature gradients [4], and human motion [5].
Harvesting energy from a rotating environment (i.e., rotating
machinery, wheels, shafts, propellers, etc) can be considered a
subset of vibration energy harvesting, but has unique
dynamics that benefit from different solutions. A tire pressure
monitoring system (TPMS) is a good example of an appli-
cation in which energy harvesting from a rotating environ-
ment is beneficial. TPMS modules are mounted on the car
rim, which are attached to inside of the valve stem (see
figure 1). They periodically measure tire pressure and send
that information via wireless transmission to a receiver loca-
ted near the center of the car. TPMS have been standard on all
cars sold in the United States since 2006 [6]. Current systems
are battery powered. The battery is not replaceable and, as the
TPMS is attached to the wheel rather than the tire, it is
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intended to last the lifetime of the wheel, which is about 10
years.

The TPMS is subjected to a £1 G excitation at the rolling
frequency as the wheel rotates through the Earth’s gravita-
tional field (see figure 1). Additionally, higher frequency
vibrations are present, although most vibrational energy
occurs at the rolling frequency [7]. Therefore, a vibration-
powered system would seem to be logical and beneficial to
improve the lifetime of the system. A vibration energy har-
vester for a rim-mounted TPMS must fit within the current
size and weight limitations of standard modules. Furthermore,
unless a rechargeable battery or super-capacitor is allowed, it
must support frequent radio transmissions at both very low
and very high speeds. In our experience, the low-speed
operation was critical, as rechargeable batteries or super-
capacitors were disallowed because of reliability and cost
concerns.

There have been prior attempts to develop and com-
mercialize vibration energy harvesters for TPMS. Perhaps
most significantly, a system was developed and commercia-
lized in the 1990s [8]. Although this system was a successful
commercial product, it would not meet current requirements

© 2014 I0P Publishing Ltd  Printed in the UK
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Figure 1. Illustration of TPMS module mounted to a rim. Directions of tangential (A,) and radial (A,) acceleration shown with representative

time traces for these two signals.

imposed by car manufacturers. Specifically, the system was
too heavy to be safely attached to the inside of a valve stem
(the system was attached using a steel band around the rim),
too tall to meet the requirements of present day low-profile
tires, and would not operate at very low speeds. Some recent
work on harvesters for TPMS has focused on potential future
tire-mounted systems [9, 10] rather than rim-mounted sys-
tems. Other work that focuses on rim-mounted systems
[11-13] ignores the power generation at very slow speeds.
Manla et al [14] proposed a system that appears similar to the
architecture we propose; however, it is actually quite different
in the details of operation and system dynamics. Additionally,
like the commercialized system of the 1990s, it would be too
tall to fit within current TPMS modules. We have previously
proposed our harvesting architecture [15, 16]; however, this
paper represents the first full description of its operation and
unique dynamics.

Most vibration energy harvesting systems operate effec-
tively only at resonance. Thus, for both linear and rotational
systems, the narrow operating bandwidth can be a chief
limitation. The following three main approaches to improving
the bandwidth are the subjects of current research efforts:
tuning the resonance frequency of the harvester during
operation [17, 18], implementing multimode oscillators [19],
and employing nonlinear oscillators to widen the bandwidth
[20]. These methods are equally applicable to rotational
systems. For example, Gu and Livermore [21] used the
dynamics of an offset pendulum to increase the harvester’s
bandwidth for rotational systems.

In this study, we present the analysis, implementation,
and test results for an approach for harvesting energy from a
rotating environment. Although we specifically apply our
design to the TPMS application, it is applicable to any
rotating environment in which the axis of rotation is more or
less parallel to the Earth’s surface (i.e., horizontal). Like Gu
and Livermore [21], our approach takes advantage of the
unique features of the dynamics of an offset pendulum to
create an inherently broad frequency response. In addition, it

Center of rotation

Figure 2. Illustration of an eccentrically mounted pendulum on
rotating wheel or shaft. The centripetal acceleration on the proof
mass acts like a linear spring as long as 6 is small.

contains many unique features that enable efficient power
harvesting under the realistic constraints of a TPMS and many
rotational systems in which the harvester must be small
compared to the rotation radius. Finally, our system incor-
porates a nonlinear oscillatory motion to further enhance the
bandwidth.

The remainder of this paper is organized as follows. First,
we present the essence of the dynamics of an offset pendulum
rotating through a gravitational field. Then, we discuss the
details of the prototype design. This will lead to more detailed
modeling and analysis of the dynamics. Finally, we present
and discuss the experimental results from both the laboratory
and road tests.

2. Offset pendulum dynamics

Figure 2 shows an offset pendulum system mounted on a
rotating cylinder or wheel. If the angle (¢) is small, the
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Figure 3. Effect centripetal acceleration on the proof mass. The
centripetal acceleration (A.) creates a restoring force in the tangential
direction, which is proportional to the angular displacement (6).
(Because the acceleration from gravity is small compared to A, it is
ignored in this figure).

ac c_t

centripetal acceleration acts like a linear spring, bringing the
proof mass back to the center (§=0). This effect is illustrated
in figure 3.

Equations (1)—(5) show the derivation of the effective
torsional stiffness on the proof mass (kg) and its natural
oscillation frequency (@,). The derivation uses the small
angle approximation. Specifically, it is assumed that sin(6) =6
and L3=L, + L,. As indicated in equation (5), the system is
always in resonance (w, =£2) if the distance of the pendulum
from the center of rotation (L) is equal to the length of the
pendulum (L,). A proof mass moving on a curved track with a
radius of curvature that is one-half the primary rotation radius
exhibits the same behavior as an offset pendulum.

t=F_,L,= (szL3 sin em.)L2 (1)
T =mQ*L,L,0 2)
dr

ky= — = mQ?L,L 3
0= 1Lo 3)
I=mL} 4

k L
W |~ =2 | 5)

i L,

where 7 is the torque acting on the proof mass about the
pendulum base and F, , is the tangential force acting on the
proof mass.

In our target application, the radius of the rotating wheel
is large compared to the generator device size and the system
operates at relatively low frequencies. Thus, the displacement
of the proof mass, if unconstrained, will be quite large.
Equations (1)—(5) only apply under the small angle approx-
imation. Furthermore, in a practical system, the proof mass
displacement must be constrained. Figure 4 illustrates the
limits of both the small angle approximation and practical
displacement limits for a standard car rim and tire. Note that
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Figure 4. Proof mass displacement amplitude and error resulting

from the small angle approximation vs rolling frequency and speed.
A rim diameter of 15 inches (38 cm) and a tire rolling diameter of 20
inches (51 cm) were assumed. Limit stop is at a 4 mm displacement.

displacement here refers to the length of the arc the proof
mass traces. A standard 15 inch rim (38.1 cm) has been
assumed. For context, a 4 mm displacement correlates to 2.4
degrees of angular displacement for the pendulum. If the
displacement is large enough to reach the end stops (4 mm in
figure 4), the system is no longer a freely oscillating resonant
structure; therefore, any resonance frequency error associated
with the small angle approximation is not relevant. From
figure 4, the error due to the small angle approximation at a
displacement limit of +4 mm (or +2.4 degrees) is less than
0.01%. In fact, the displacements could be much larger before
significant errors (>1%) occur.

In addition to the small angle approximation, the pre-
ceding analysis assumes the mass is a point mass, meaning
that it has no rotational inertia, and that there are no other
forces acting on it. Although the point mass assumption
introduces only negligible errors, there will always be other
forces acting on the proof mass if energy is to be extracted. A
more detailed analysis, including the other forces acting on
the proof mass, follows in sections 3 and 4.

3. Prototype design and discussion

A few practical application-related constraints must be con-
sidered that will largely drive the design implementation
presented here. First, the system must generate enough power
to support transmissions once per minute, even at very slow
speeds (<15 kph). This constraint necessitates relatively large
allowable displacements (~ +2.5 mm). The primary reason
behind this constraint is that it is important for the system to
generate enough power to send an initial pressure measure-
ment during the first minute of driving, which is typically
quite slow. The constraint could potentially be obviated by
the inclusion of long-term energy storage, such as a
rechargeable battery. However, a rechargeable battery would
add too much cost to the system and would present its own
reliability concerns. Second, the height (i.e., size in the radial
direction) must be small because of the tire and rim geometry,
which rules out a cantilever structure extending in the radial
direction or an actual pendulum as shown in figure 2.
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Figure 5. Illustration of energy harvester concept, side view. Ball
rolls back and forth in the curved track between the two end stops.
As it passes through the center of the track, it deflects the
piezoelectric beams.

We implemented a curved track with a radius smaller
than the rim radius to implement the offset pendulum
dynamics. This solution is illustrated in figure 5. The proof
mass is a steel ball bearing that rolls back and forth along the
curved track. This system can withstand the very large static
centripetal load without deflection while still maintaining low
friction motion in the tangential direction. To improve the
harvesting of energy at low rotating frequencies, we
employed spring loaded end stops.

The transducers are two piezoelectric beams running
along the length of the track, one on each side. The beam and
proof mass make contact through a smaller ball held in a
conical hole along the side of the track. As the proof mass
rolls past the smaller ball, the smaller ball gets pushed out and
deflects the piezoelectric beam. This process is illustrated in
figure 6, which shows the device from the top with the pie-
zoelectric beams running along each side of the device.

We decided to use piezoelectric rather than electro-
magnetic transduction because, at low frequencies, the vol-
tage from the electromagnetic system would be very low and
require more complex power electronics, and therefore have
reduced efficiency. As piezoelectric devices are generally
stiff, they are best actuated in a high-force, low-displacement
mode. The mechanical actuation system shown in figure 6 is
essentially a force amplification mechanism, so the lower-
force, higher-displacement motion of the proof mass is con-
verted to a higher-force, lower-displacement motion for the
piezoelectric beam. A second benefit of the actuation system
shown is that it is inherently immune to reliability concerns
from over-travel.

4. Modeling and analysis of nonlinear dynamics

The interaction of the proof mass with the piezoelectric
beams, as well as with the spring loaded end stops, alters the
effective spring constant of the system. Figure 7 shows the

Tangential Direction

(a)

Figure 6. Illustration of piezoelectric beam actuation, top view.
When the proof mass ball is in the position on the left (a), the
piezoelectric beams are undeflected. When the proof mass ball is in
the center position (b), the piezoelectric beams are deflected. When
the proof mass ball passes through to the right (c), the beams return
to their undeflected position. Thus, there are two piezoelectric
deflection cycles per proof mass oscillation period.
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Figure 7. Effective spring (restoring) force and gravitational force on
the proof mass over its range of motion. Gravitational force assumes
the tangential axis is aligned to gravity.

effective spring force on the proof mass at very slow speeds
(i.e., neglecting the effect of the centripetal acceleration). The
location of the spring loaded end stops is clearly indicated.
Throughout most of the proof mass motion, there is a negative
spring constant, meaning that the spring force pushes the
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Figure 8. Effective spring (restoring) force at three different speeds
showing the changing shape of the spring force as a function of
speed. Area in which the spring loaded end stops are active (|
x|>2.5 mm) is not shown.

proof mass away from the zero displacement point. The
gravitational force on the proof mass is also shown for the
case where the tangential axis is aligned with gravity. The
figure shows that the gravitational force is strong enough to
push the proof mass through its entire range of motion at a
low speed. From a design perspective, it is desirable to
maximize the amount of force transferred to the piezoelectric
element. In the quasistatic case (as shown in figure 7), the
force transfer would be maximized if the effective spring
force just reaches, but stays below, the gravitational force.
The design case shown in figure 7 leaves a small margin for
error. All relevant parameter values for the design case shown
in figures 7-9 are shown in table 1.

Figure 7 includes the effect of the end springs (i.e., limit
stops) but does not include the equivalent spring effect of the
centripetal acceleration. Equation (6) gives the equivalent
spring force over all speed ranges, including the effect of
centripetal acceleration, but neglects the effect of the spring
loaded end stops. The spring force for three different speeds is
shown in figure 8. As the speed increases, the effect of the
centripetal acceleration becomes more significant. At 65 kph,
the system still exhibits negative stiffness, but it is less
extreme and through a smaller portion of the range of motion.
At 100 kph, the stiffness function is that of a stiffening spring.
At higher speeds, the spring will behave more linearly, and
therefore more like an offset pendulum system, as described
in section 2.

Fy = —mA. sina — 2kpytany (6)

where A, is the centripetal acceleration, «a is the angle between
the rim and track at some point along the track (x)—given by
a=x(1/R,~1/Ls), where R;, is the radius of the track in which
the proof mass travels and L; is the distance from the center of
the wheel to the tire pressure sensor location, k, is the stiff-
ness of the piezoelectric beam, y is the deflection of the
piezoelectric beam, and y is the angle between the centers of
the proof mass ball and the smaller piezoactuating ball and is
given by y=sin"'(=x/(R, + R,))—where R, and R, are the
radii of the proof mass and actuator balls, respectively.

very slow = = 65 kph === 100 kph

potential energy [ul]

displacement [mm]

Figure 9. Shape of the nonlinear potential function. Three speeds
shown: near 0 kph (very slow), 65 kph, and 100 kph. At high speeds,
the potential function approaches that of a standard linear spring.

Table 1. Parameter values for design case shown in figures 7-9.
Parameters are defined in equation (6).

Parameter Value Unit Comment

m 6.8 grams

A. (65kph) 628 ms

A, 1470 ms>

(100 kph)

k, 304 Nm™

R, 4.76 mm

R, 1.59 mm

R 80 mm

L3 159 mm

y 0<y<051 mm y is maximum at x =0

o +0.92 deg. for displacements (x)
of £2.5 mm

Y +23 deg. for displacements (x)
of £2.5 mm

Figure 9 offers another view of the same behavior. The
initial negative stiffness results in a double-well potential
function characteristic of bistable oscillators. As the speed
increases, the height of the unstable equilibrium point lowers
until the potential function is characteristic of a stiffening
spring. At very high speeds, the spring will approach the
behavior of a linear spring.

The simplified equations of motion are given in (7) and

®)

7 .
gm)'c' + bx + mA.C, sgn (x) + aV + A. sin a

+ 2k,y tany = G sin (£¢) 7
oty L (8)
C[’ CI’

where b is the coefficient of viscous damping, C, is the
coefficient of rolling friction, a is the effective piezoelectric
force factor, V is the voltage across the piezoelectric device,
C, is the capacitance of the piezoelectric device, and / is the
current flowing into the electronic load.



Smart Mater. Struct. 23 (2014) 105004

S Roundy and J Tola

——Energy Harvester Stiffness
0.06

& Duffing Equation Stiffness

0.04
0.02
0

Force (N)

-0.02
-0.04

-0.06
-2.5

-1.5 -0.5 0.5 1.5 2.5

position (mm)

Figure 10. Effective spring force for the energy harvester prototype
and for a general cubic spring of the form kyx+ kx>, where
k;=-0.01 and k;=0.0075.

The left side of equation (7) shows the inertial term (7/5m
X), viscous damping term (bx), rolling friction term
[mA.C,sgn(x)], piezoelectric coupling term (aV), and the
equivalent restoring force as given in equation (6). Note that
the 7/5 coefficient in front of the inertial term is a result of the
rotational inertia of the proof mass. If the mass were treated as
a point mass, the coefficient would be 1. In practice, the
rotational inertia only has a significant effect near the speed at
which the friction components overwhelm the motion of the
system. This effect will be discussed in more detail in the
following section. Note also that the effect of friction between
the proof mass and the actuator balls is neglected in
equation (7). This friction force varies from zero to a max-
imum value when the piezoelectric beams are at their max-
imum extension. For the design case under consideration, the
maximum friction force between the proof mass and actuator
balls is approximately equivalent to the rolling friction
between the proof mass and housing at a speed of 13 kph,
beyond which speed the rolling friction quickly dominates.
The important dynamics of the system are essentially unaf-
fected by omitting this friction force.

The two parts of the equivalent restoring force can be
written as a function of the displacement variable x, as shown
in equations (9) and (10). If L;=2L,, the condition for
resonance in equation (5), the first term of the restoring force
reduces to equation (11)

L;—L
A, sina = mQ? (g]x )
L,
COSY pax
2kpytany=2kpx(l - —) (10)
cosy
A, sina = mQ3x (11D

Although perhaps not immediately obvious, the equiva-
lent restoring force is similar to the standard cubic stiffness of
a Duffing oscillator. In particular, the right side of
equation (10) could be rewritten as kjx + ksx>. As shown in
figure 10, if £y =—0.01 and k3 =0.0075, the resulting restoring
force as a function of x is almost exactly the same as that
given by equation (10), with values taken from the prototype
in figure 14. Taken together, the entire restoring force could
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Figure 11. Simulated output voltage and power vs rotation
frequency. Piezoelectric generator is terminated with a matched
resistor.

be written as (ko + k)x + ksx°, where ky=m&2* and increas-
ingly dominates as rotation speed increases.

5. Simulation results

We created a numerical simulation of the system to explore its
behavior and optimize the design. As the system is highly
nonlinear, we use the convergence to an average power (P),
given by equation (12), as the appropriate performance metric
for this nonlinear system. The electrical load is assumed to be
a matched resistor (R;), calculated as R; = (1/(QC1,))"‘C/(44’2 +
k' where k is the system coupling coefficient and ¢ is the
viscous damping ratio [3]. This equation is for a resonant
piezoelectric system, which admittedly has simpler dynamics
than the current system. Nevertheless, we considered it suf-
ficiently accurate to explore the important dynamics. At each
frequency, the system simulation is allowed to run for a
sufficient number of forcing periods (n) such that any tran-
sients die out; then, equation (12) is applied over n periods to
get an average power generation value

" 2

poL / Ve, (12)
nTJo R L

where n is the number of forcing periods, 7=2x/S2 is the

period of the forcing oscillation, V() is the generated voltage,

and R; is the load resistance.

Given the extra forces from the interaction with the
piezoelectric beam and the spring loaded end stops, the sys-
tem is no longer always resonant, as implied by figure 2 and
equation (5). However, the bandwidth of the device is still
significantly enhanced compared to a simple linear oscillator.
Figure 11 shows the simulated rms voltage across a matched
resistor and the power output vs frequency.

The simulated output shown in figure 11 indicates that
the proof mass motion, and thus voltage and power output,
drop dramatically at about 160 kph. The simulation models
both viscous and rolling friction. At very high speeds, the
displacements naturally go down and the rolling friction goes
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Figure 12. Allowable harvester misalignment vs speed for a typical
wheel. If the harvester is misaligned by more than this, the proof
mass will not move and there will be no power output.

up due to an increasing normal force between the proof mass
and track. At around 160 kph, the friction overwhelms the
motion of the system. The simulation shown in figure 11
assumes a coefficient of rolling friction of 0.0005. Although
this value has not been directly measured, it is consistent with
experimental power output at high speeds measured in both
laboratory and road tests.

One disadvantage of this particular design is that it is
very sensitive to misalignment about the wheel rotation axis.
If the track in which the proof mass rolls is misaligned, a
portion of the centripetal acceleration will couple into the
direction of motion of the proof mass (the tangential direc-
tion). The tangential excitation is +1 G. If the component of
the relatively static centripetal acceleration that couples into
the direction of motion is greater than 2 G, the proof mass will
be pinned against one limit stop and not move at all.
Figure 12 shows the allowable misalignment versus speed for
a typical tire/rim combination. To operate at high speeds, the
misalignment must be significantly below 1 degree. The
prototypes we built and tested had a self-alignment mechan-
ism built in and that operated well up to approximately
155 kph. However, it is worth noting that this particular
design requires a self-alignment mechanism to operate
robustly. The sensitivity to misalignment can be reduced by
reducing the track radius below one-half the wheel radius. In
fact, we used both simulated and tested prototypes with
smaller track radii in an effort to improve high-speed per-
formance. However, we found that the self-alignment
mechanism was sufficient and, although the smaller track
radii resulted in better high-speed operation in simulation, that
advantage rarely carried over to actual laboratory and road
tests.

The data shown in figure 11 was collected by simulating
a wheel turning at a constant speed. The simulation was
repeated for each wheel rotation speed. Simulating the system
as the wheel speeds up and slows down again reveals further
dynamic characteristics. Figure 13 shows a simulation of the
proof mass displacement as the speed of the car increases
from 8 to 225 kph. The gray area in the figure shows the
position output over time as the speed slowly ramps up. The
black dots are ‘stroboscopic’ points indicating the output

Position vs. Speed, Accelerating
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Figure 13. Simulated position of the proof mass vs speed
accelerating from 8 to 225 kph (up-sweep) and then decelerating
from 225 back to 8 kph (down-sweep). The gray regions show the
proof mass position over time, whereas the black dots are
‘stroboscopic’ points indicating the position of the proof mass each
Q/27, where £2 is the rolling frequency of the wheel.

position at each £2/2z, where (2 is the rolling frequency of the
wheel. Regions in which the output is periodic, at the same
frequency as the input, appear as dark black lines. Areas in
which the black dots appear randomly indicate a chaotic
response, which is characteristic of bistable oscillators under
certain circumstances. Chaotic behavior is exhibited below
65 kph during both the up-sweep and the down-sweep. This is
consistent with the potential function shown in figure 9. From
65 to 190 kph, the oscillation amplitude on the up-sweep is
much higher than on the down-sweep. This behavior is con-
sistent with a stiffening spring [22, 23], which the harvester
exhibits at moderate to high speeds because of the interaction
of the restoring forces imposed by the piezoelectric beam
actuation mechanism and the centripetal acceleration. This
stiffening behavior is also evident in the 100 kph curve in
figure 8. The nonlinear stiffening behavior is not apparent in
the single speed simulations shown in figure 11. In practice,
this stiffening effect provides a stable operation characteristic
over a wide frequency range, as will be shown from the
laboratory and road testing.

The acceleration/deceleration for the data shown in
figure 13 was 5.5kphs™'. Simulations were run with
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Figure 14. Prototype device used for road testing. (a) Fully assembled device with piezoelectric beam along outside and actuator ball visible
protruding from conical hole. (b) Inside of harvester device showing curved track, proof mass, and spring loaded end stops.
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Figure 15. Laboratory (a) and road (b) test setups. The harvester prototype is attached to a rim. The signal from the harvester is acquired using

a wireless data acquisition system attached to the wheel hub.

acceleration/deceleration  values ranging from 3.5 to
22 kphs™'. The essential characteristics of the output data do
not change based on acceleration/deceleration. The onset of
chaos and large stable oscillations occur at the same speeds,
regardless of acceleration/deceleration values within the range
simulated.

The amplitude of oscillation at slow to moderate speeds
is primarily determined by the location of the limit stops.
Therefore, as long as the system can ‘push through’ the center
region, where the piezoelectric beams are at maximum
deflection, the value of system parameters, such as mass,
viscous damping, and rolling friction, do not have a large
effect on the system’s dynamic performance. The primary
effect of mass, damping, and friction on dynamic perfor-
mance are to determine the speed at which the proof mass
ceases to undergo large amplitude oscillations. As the mass
increases, the speed at which friction overcomes the oscilla-
tion also increases and vice versa. As the damping and rolling
friction increase, the critical speed decreases.

The speed over which the response is chaotic is primarily
determined by the shape of the potential energy function, as
shown in figure 9. For speeds at which the potential function
is highly bistable, the response appears chaotic. As the speed
increases, the potential function transforms from a bistable to
a stiffening spring. For the design case under consideration,
this occurs at approximately 65kph. The shape of this
potential function is determined by the proof mass, piezo-
electric beam stiffness, and geometry of the curved track,
proof mass, and actuator balls. These factors will influence
the effective restoring force, as shown in equation (6), and
therefore, the potential energy function.

6. Laboratory and road test results

Several prototypes based on this concept were built and tes-
ted. One example is shown in figure 14. Three experimental
setups were used to validate the behavior of the harvesting
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Figure 16. Full TPMS prototype system. The storage capacitor,
power electronics, programming pins, and TPMS chipset are
attached to a printed circuit board on the harvester package.

system. The first was a laboratory setup (see figure 15(a)), in
which a wheel is rotated at a controlled speed with the har-
vester prototype attached. This setup allows more detailed
investigation of the harvesting system. The second is the road
test setup, shown in figure 15(b), in which the harvester is
attached to the rim inside an inflated tire and interfaced with
an electrical feedthrough to a data acquisition system that
continuously measures output voltage across a load resistor,
among other signals such as temperature. In the third test
setup, the harvester powers an actual tire pressure monitor
device developed by LV Sensors Inc. (see figure 16). The
entire self-powered TPMS prototype system is attached to the
rim inside an inflated tire using a belt around the rim. The
measurement variable of interest in this case is the time
between transmissions. Extensive tests were performed with
all three test setups.

Figure 17 shows the harvester voltage at three different
speeds measured on the laboratory test setup. The signal
becomes significantly noisier at higher speeds, as expected.
The peak voltage is relatively constant across a wide voltage
range, as designed. However, at very high speeds, there is a
slight drop in peak voltages.

Figure 18 shows the voltage output across the load
resistor measured with the first road test setup. The measured
voltage is a little lower in magnitude and the pulse is narrower
than the simulated voltage. These facts likely indicate an
assembly tolerance issue, such as a small gap between the
piezoelectric beam and the actuator ball placed in the conical
hole (see figure 6) when the proof mass is at one end or the
other. The result is that the piezoelectric beam does not deflect
quite as far as designed. The effect of noise was not included
in the simulations; however, it is clear in the test data (both
laboratory and road test data). As the speed increases, the
effect of the noise becomes more pronounced.

The circuit architecture for the third test setup is shown in
figure 19. The energy requirement for one measurement and
transmission cycle depends, to a certain extent, on the state
machine programmed into the TPMS. Each car manufacturer
has its own specification for data gram length, number of
repeats, etc. The state machine we used for the system
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Figure 17. Piezoelectric voltage vs time. Measurements taken on
laboratory setup at three different rotation speeds.
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Figure 18. Simulated and measured open circuit voltage output. Tire
is rolling at 16 kph.

demonstration tests required 375 u4J per measurement and
transmission cycle. Therefore, the system requires 6.25 yW of
power generation on average to achieve one transmission per
minute. We designed the system to achieve at least 10 yW
through a load resistor at very slow speeds (see figure 11) to
account for inefficiencies in the power circuitry.
The power circuitry operates as follows. The comparator
circuit shown in figure 19 waits for the voltage across the
storage capacitor (Cy,,) to reach an upper threshold (V).
Then it connects the TPMS load to the Cy,,, through a charge
pump voltage divider that reduces the voltage by one-half.
Once the voltage on the C,, drops to a lower threshold
(Viow), the comparator disconnects the TPMS load while the
Cy,r recharges. Thus, the measurement variable of interest is
the time between transmissions. Note that the TPMS system
has an onboard voltage regulator so its power supply does not
need to regulated, it only needs to remain inside the operation
window of the TPMS. We selected the size of the storage
capacitor, the threshold voltages, and the reduction ratio from
the charge pump voltage divider to meet the energy require-
ments for TPMS operation. Furthermore, we selected the
threshold voltages to be close to one-half the open circuit
voltage generated by the piezoelectric elements (see
figures 17 and 18). In this particular case, the threshold vol-
tages are 7.3 and 3.8 volts and Cy,,,, is 40 uF. The amount of
energy supplied to the TPMS during one measurement and
transmission cycle is therefore E..=%2 CstO,(Vﬁigh—Vi,w),
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Figure 19. Circuit architecture for full system test setup. Piezoelectric elements charge a storage capacitor. Once the voltage on the storage
capacitor is high enough to support a measurement and transmission cycle, the comparator closes the switch connecting the storage capacitor

to the ¥2 voltage divider and the TPMS.

which is 777 uJ or roughly double what is really needed.
Because we have not included the parasitic current draw of
the comparator, voltage divider, and leakage currents, we
sized the system to provide extra energy per cycle. The TPMS
system takes a measurement, sends a data packet, waits for a
minor delay, and then continues to transmit the data packet
until its power is shut off. Clearly, the system could be further
optimized. However, for our purposes, this configuration
provided a robust demonstration piece.

We calculated the expected time between transmissions
based on a dynamic simulation of the system that provides
power transfer to the storage capacitor, or power generation,
versus speed. The expected time between transmissions is
then simply the energy usage per cycle (E,) divided by
power generation at a given speed. For example, at 10 kph,
the expected power generation is 10 yW. Therefore, the
expected time between transmissions would be 78 s.

Figure 20 shows the results of road tests conducted with
the system just described. Both experimental data from
multiple runs and simulation output are shown. The system
performs well, meaning that it supports a transmission more
than once per minute, from speeds of 10 to 155 kph. The slow
speed performance is particularly impressive, as the system
can support more than one transmission per minute down to
speeds of 10 kph. Note that, particularly at slow speeds, the
system generates more power than expected. This is most
likely because of extra noise imparted to the system (i.e., road
noise, bumps, etc) that is not modeled but contributes to
power generation. At high speeds, above 155kph, the
increased rolling friction overcomes the inertial forces and the
time between transmissions climbs rapidly. Overall, the sys-
tem behaves marginally better than the simulations predict.

7. Conclusions

We demonstrated an energy harvesting architecture for a
rotating environment in which the axis of rotation is hor-
izontal, or perpendicular to gravity. We have applied this
harvester architecture to a TPMS. The architecture uses the
dynamics of an offset pendulum to increase the operational
bandwidth. The combination of restoring forces acting on the
system, including centripetal acceleration and restoring forces
from the piezoelectric beams, creates a nonlinear bi-stable
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Figure 20. Experimental data showing the time between TPMS
transmissions for a rim-mounted energy harvester. Data shown for
multiple tests on three different devices. The red dotted line shows
the expected time between transmissions based on the simulation.

oscillator at slow speeds that shifts to a stiffening oscillator at
higher speeds. Although not always resonant, the frequency
response of the system is significantly broader than a standard
linear oscillatory system. The harvester was tested in both a
laboratory setting and on the road. The test results show a
good match to dynamic models, indicating that they can be
used profitably as a design tool. During road tests, the har-
vester was able to support better than one transmission per
minute in the speed range of 10-155 kph, and more than three
transmissions per minute from 32-155 kph.
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