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ABSTRACT 
 This paper outlines a mathematical framework necessary 

to determine the optimal transducer force for a given vibration 

input. This relationship, between input vibration parameters 

and transducer force gives a critical first step in determining 

the optimal transducer architecture for a given vibration input. 

This relationship also yields a theoretical maximum energy 

output for a system with a given proof mass and parasitic 

mechanical losses, modeled as linear viscous damping.  

This relationship is then applied to three specific vibration 

inputs; a single sinusoid, the sum of two sinusoids, and a 

single sinusoid with a time dependent frequency (chirp). For 

the single sinusoidal case, the optimal transducer is found to 

be a linear spring, resonant with the input frequency, and a 

linear viscous damper, with matched impedance to the 

mechanical damping. The resulting transducer force for the 

input as a sum of two sinusoids is found to be inherently time 

dependent. This time dependency shows that an active system 

(not only dependent on the states of the system) can 

outperform a passive system (dependent only on the states). 

The final application, for a swept sinusoidal input, results in a 

transducer of a linear viscous damper, with matched 

impedance to the mechanical damping, as well as a linear 

spring with a time dependent coefficient.  

 

INTRODUCTION 
Recent work in vibration energy harvesting has focused 

on ways to improve power output from vibration sources that 

are not modeled as a single sinusoidal input.  Much of this 

work has investigated the use of nonlinearities as a way to 

increase energy output [1] [2] [3]. These nonlinearities are 

usually of the form of a nonlinear spring, such as a Duffing 

oscillator. 

Daqaq et al. showed that for Gaussian white noise the 

energy generation was not a function of the transducer’s 

potential function. That is to say, that the restoring force of the 

system does not affect the power generation for a Gaussian 

white noise vibration input. When Daqaq examined the case 

for filtered white noise, where some frequencies are more 

represented than others, he was forced to assume a form for 

the potential function in order to estimate a solution [4]. 

Hoffmann et al. showed that for certain vibration inputs a 

nonlinear mono-stable or bi-stable oscillator could greatly 

outperform a linear system. However this work had to assume 

a form for the restoring force before the parameters could be 

optimized for power generation. Select results from this study 

are shown in Table 1 [5].  

 

 
Stepped 

Input 

Swept 

Input 

Three 

Inputs 

Bounded 

White Noise 

Linear 100% 100% 100% 100% 

Nonlinear 

Monostable 
0% +479% 0% +52% 

Nonlinear 

Bistable 
+11% +364% +11% +33% 

Table 1. Select results from Hoffman et al [5].  

 

These example works, and others, give useful insight to 

the potential uses of nonlinearities for harvesting from 

complex vibration inputs. However these works do not give a 

clear relationship between the parameters that define the input 

vibration and the transducer.  

By using methods from the Calculus of Variations this 

work will find the unconstrained and globally optimal 

relationship between the input vibration, and force that must 

be produced by the transducer. This relationship will also 

define an upper limit for power generated for a given vibration 
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input. This framework will then be applied to three case 

studies, a single sinusoid, the sum of two sinusoids, and a 

swept sinusoidal input. 
 
MODELING 

A simple, generic model for an inertial energy harvester, 

as shown in Figure 1, is a kinetic harvester with a generic 

transducer force    that acts on the proof mass. This generic 

transducer may contain both energy dissipative elements for 

power generation as well as energy conservative restoring 

elements. In general, the system is subject to a forcing 

function     . The inherent mechanical losses that are found 

in any real system are approximated by a linear viscous 

damper described by a single coefficient   . This single 

degree of freedom system is characterized by a single 

displacement  . If the system is excited through base 

excitation, as is the normal case for an inertial generator, then 

     would be the mass     multiplied by the base 

acceleration     . In this case the displacement   is the 

relative distance between the proof mass and ground. This 

system is modeled by equation 1. 

 

  ̈     ̇           (1) 

 

The second order differential equation 1 that models this 

generic system can be expressed in state space form by 

letting              ̇: 

 

 ̇     (2) 

 

 ̇  
 

 
(             ) (3) 

 

 
Figure 1. A generic inertial generator characterized by a 

single displacement  . Here    represents the force 

produced by an unknown transducer architecture.    is 

the coefficient that characterizes the system’s linear 

viscous damping due to inherent mechanical losses of the 

system. 

 

An energy balance of the system is used in order to find 

an expression for the energy generated by the transducer as a 

function of the input. By examining the energy balance of the 

system in steady state we can neglect the kinetic energy of the 

mass as well as the possible potential energy stored in the 

transducer. This is due to the fact that these energy storage 

elements are restorative, thus they do not represent a net 

energy input or output to the system while it is in steady state.  

The energy balance equations are: 

 

         (4) 

 

    ∫          (5) 

 

      ∫      
          (6) 

 

Substituting equation 5 and 6 into 4 will yield an 

expression for the energy generated as a function of the input 

force and the velocity of the proof mass. 

 

     ∫            
      (7) 

 

For more generalized results we can look at the square of 

the power to examine a continuous positive definite 

functional, thereby allowing us to find the critical points in the 

magnitude of the energy generated. 

 

   ∫            
      (8) 

 

Equation 8 now represents the energy generated by the 

transducer as a positive definite functional. If the velocity of 

the proof mass    is treated as the control parameter, the 

critical points of the functional can be found through the 

stationary condition of the Euler-Lagrange equation [6]. 

Taking   to be the integrand of equation 8 we have:  

 

              
      

       
           

    
   

  (9) 

 

and the stationary condition to be:  

 
  

   
   (10) 

 

In this case the stationary condition yields the critical 

points of the energy generated with respect to the velocity path 

of the proof mass. Equation 3 can be used to relate the velocity 

of the proof mass and the force of the transducer,   , acting on 

the proof mass. This relationship will allow an expression for 

the necessary transducer force such that the proof mass will 

follow the calculated optimal velocity path for energy 

generation. Solving the stationary condition for the critical 

velocities of   : 

 
  

   
                    

     
   

    (11) 

 

                            (12) 
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By factorization, the resulting three solutions are 

apparent. Here   denotes a critical path with respect to the 

energy generated. 

 

  
  

    

   
 (13) 

 

  
  

    

  
 (14) 

 

  
    (15) 

 

These three relationships for   
  represent the critical 

velocity paths, given a vibration input      to the system that 

will result in a minimum or maximum energy output. By 

substituting these signals into the second derivative the type of 

critical points are determined. The second derivative is found 

to be: 

 
   

                          
   

  (16) 

 

At   
  

    

   
: 

 
   

                                 (17) 

 

which is negative for all input vibrations     . 

At   
  

    

  
: 

 
   

                                  (18) 

 

which is positive for all input vibrations     . 

At   
   : 

 
   

           (19) 

 

which is positive for all input vibrations     . 

From this examination we can conclude that   
  

    

   
 

corresponds to the maximum energy generated by the 

transducer for a given input force. While   
  

    

  
       

  

  correspond to a minimum amount of energy generated.  

By substituting these relationships into the governing 

differential equations 2 – 3, an expression for the displacement 

of the proof mass    as well as the transducer force    can be 

expressed as a function of the system properties and the input 

force. 

For   
  

    

   
: 

 

  
   ∫

    

   
   (20) 

 

  
    

  ̇   

   
 

    

 
 (21) 

 

Similarly for   
  

    

  
: 

 

  
   ∫

    

  
   (22) 

 

  
  

   ̇   

  
 (23) 

 

And for   
    

 

  
     (24) 

 

  
       (25) 

 

Here, the transducer force,     is an explicit function of 

time. The optimal transducer can then only be represented as a 

function of states if the input and its derivative can be 

expressed as a function of the states through the corresponding 

relationships of          . These results are summarized in 

Table 2. Equations 24 and 25 correspond to the trivial solution 

of a stationary condition of the proof mass. 

 

SINGLE SINUSOIDAL INPUT 
It is difficult to see the relevance of equations 20 – 23 in 

their general form. To help illustrate these relationships a 

simple example of a single frequency sinusoidal input will be 

examined. First we will look at the relationship that 

maximizes the energy output of the system, and then examine 

the conditions that create minimum energy output. 

For the maximum power condition   
  

    

   
, 

letting                  results in the following 

relationships: 

 

  
    

   

    
        (26) 

 

   
  

   

   
        (27) 

 

  
    

      

   
        

   

 
        (28) 

 

Substituting for   
        

 : 

 

  
              (29) 

 

Similarly for   
  

   

  
       : 

 

  
         (30) 

 

And for   
   : 

 

  
       (31) 
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Critical Velocity Path Critical Position Path Critical Transducer Force Type 

  
  

    

   

   
   ∫

    

   

     
   

  ̇   

   

 
    

 
 Maximum 

  
  

    

  

   
   ∫

    

  

     
   

  ̇   

  

 Minimum 

  
      

      
       Minimum 

Table 2. Summary of critical path relationships for a generic input. 

 

 

The three results for the critical transduction force can be 

interpreted as follows; for the maximizing condition,   
  

    

   
, the optimal transducer model is a linear spring and a 

linear viscous damper for an electrical transducer. The 

constant of the linear spring is found to be resonant with the 

vibration input and the impedance of the electrical damper is 

found to be matched to the impedance of the mechanical 

damper. That is,   , from equations 1 and 3, is the same value 

as    for the transducer in equation 29. This system is a 

completely passive system, being only a function of the 

system’s states. The system is shown in Figure 2 and modeled 

by the differential equation 32 

 

 
Figure 2. A diagram of the optimal power transducer 

architecture for an input                 , where 

     . 

 

  ̈      ̇          (32) 

 

If the form of the transducer force is assumed to be a 

linear viscous damper in parallel with a linear spring, the 

coefficients that result in maximum power generation are 

widely known and have been previously reported [7]. This 

framework yielded this previously assumed optimal 

transducer, without any assumptions on the form of the 

transducer. By using this simple vibration input, with a 

partially known solution, this mathematical framework was 

able to be verified.  

For the critical path    
  

    

  
       , which 

corresponds to a minimum power condition the corresponding 

transducer force is a linear spring with spring constant   
   . This system is shown in Figure 3 and modeled by 

equation 33. While this system has a large response in    to 

the input                 , no energy will be converted to 

useful electric energy since the system’s only dissipative 

element is from parasitic losses due to mechanical damping. 

The final relationship   
    gives the trivial stationary 

solution for the energy output, as previously mentioned. Under 

this condition, the transducer force    provides an equal and 

opposite force to the input      on the mass in order to keep 

the proof mass stationary. In the case of base excitation, the 

relative displacement between the proof mass and ground is 

zero. Physically this would be accomplished by the use of an 

infinitely stiff spring for the transducer,    .  

 
Figure 3. This diagram represents the transduction model 

for the minimum energy outputs for   
  

    

  
  is       

and for   
    is    .  

 

  ̈     ̇          (33) 

 

MULTIPLE SINUSOIDAL INPUT 
A common vibration input is one of two simultaneous 

sinusoids at different frequencies. This type of vibration 

occurs in rotating machinery where two unbalanced masses 

rotate at different rates fixed relative to one another or in a 

system where multiple harmonics are well represented. 
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The RMS power output scales with    for the standard 

linear system. Thus, the case where the amplitudes of the two 

sinusoids are equal will be examined. In the case where one 

sinusoid has an amplitude much greater than the other, it is 

reasonable to assume that the maximum power generation will 

be achieved by creating a linear harvester tuned to the ω 

corresponding to the maximum value of  
  

 
. In the case where 

the two sinusoids are of similar, but different amplitudes, the 

following analysis is relevant.  The expression for this double 

sinusoidal input is shown in equation 34. 

 

                            (34) 

 

Here,         represents the multiple difference between 

the two frequency components. 

Examining now only the input-velocity relationship from 

equation 13 which results in the maximum energy output, the 

optimal velocity signal for an input of two sinusoids is 

obtained: 

 

  
  

   

   
                   (35) 

 

Using equations 20 and 21 the relationships for the 

optimal position path and corresponding transducer force to 

achieve the velocity response as shown in equation 35 can be 

written as: 

 

  
    

   

    
(        

 

 
        ) (36) 

 

  
  

   

 
(                )   

      

   
(                 ) (37) 

 

Substituting equations 36 and 35 for          into 

equation 37, where available, yields: 

 

  
                 (38) 

 

Where    is the time dependent component of the 

transducer force that cannot be directly substituted for by the 

systems states         . 

 

   
      

   
(

 

 
  )          (39) 

 

From equation 39 it can be seen that when there is only 

one frequency component, when    , the amplitude of the 

time dependent portion of the transducer is zero. This intuitive 

result for the transducer force shows that as     the 

amplitude of the time dependent component goes to zero and 

the transducer architecture converges to the linear harvester as 

seen for the single sinusoidal input in equation 29. However, 

as          the amplitude of the time dependent portion of 

the transducer force grows without bound, as is shown in 

Figure 4. 

 
Figure 4. The effect of   on the amplitude of the time 

dependent component of the transducer force. 

 

The time dependent component of the transducer force 

shows that the true unconstrained optimal transducer force for 

an input vibration of this form cannot be realized with a 

passive system; a system that is only a function of the states. 

This is due to the complex behavior of the optimal transducer 

force. In a single period of the proof mass, a different value of 

the optimal transducer force is required for the same values of 

the states. This result shows that in principle an active system 

can outperform a passive system of any type, linear or non-

linear. However, this would assume that the restoring force 

implemented is conservative. An example of this restoring 

force is shown in Figure 5. 

An energy balance is used to determine the nature of the 

time dependent force. It must be determined if the force does 

work adding energy to the system over time, takes energy 

from the system, acting as a complex damping element, or  

does no net work on the system and acts as a conservative 

element, such as a spring. The net energy into the proof mass 

from the time dependent force can be calculated by integrating 

the force over the displacement for a period   of the entire 

signal. 

 

     ∫         ∫      
    

 

 

 

 
 (40) 

 

Substituting equation 39 and 35 for the time dependent 

portion of the transducer and optimal velocity path 

respectively. 

 

       
     

   
 (

 

 
  )    

∫                                      
 

 
 (41) 

 

where   is the complete period of the input vibration. This 

period can be found by finding the point in time in which the 

periods of the two sinusoidal components simultaneously 

occur. This can be found by finding the integer value   such 
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that        . The total period for any input of this form is 

then defined by   
  

 
 .  

 

 
Figure 5. (Top) The steady state position of the proof mass 

versus time for      . This complex path repeats itself 

every period   of the input signal. (Bottom) The time 

dependent force plotted over the optimal path    over a 

period  . It can be seen that during one period the same 

position is repeated multiple times, but requires a different 

transducer force. 

  

 Evaluating equation 41: 

 

   (
  

 
 )    

    (
                               

(     )                               
)

       (42) 

 

For the constraints of     and       equation 42 

reduces to zero. This shows that the time dependent force acts 

as a conservative element, not doing any work to the system 

over time.  

The upper limit for energy output from the optimal 

transducer can be shown analytically. This can be 

accomplished in a similar manner to the derivation of the 

average power output for the single sinusoid case. Knowing 

that from the result of equation 38 the power output from the 

transducer is dissipated by the force of a linear viscous 

damper, the instantaneous power dissipated through this 

element can be written as: 

 

          
  

 (43) 

 

Here   
  is the optimal velocity shown in equation 35. 

Integrating the instantaneous power output over time yields 

the total energy generated by the transducer. Again the upper 

limit of the integral is defined as the period of the input.  

 

    ∫     
  

   
  

 
 

 
 (44) 

 

The integral is then evaluated in the general case for all 

        as well as the linear case at    .  

 

    
       

    
 (45) 

 

   
      

   
 (46) 

 

Examining the ratio 
  

  
 will yield the percentage of energy 

generated by the optimal transducer for any value of   as 

compared to the linear system with a single sinusoidal 

vibration input at    . 

 

  
  

  
 

 

 
 (47) 

 

That is to say, the maximum amount of energy that can be 

extracted from an input of two sinusoids separated in 

frequency by a factor   is half of the energy that can be 

produced by a linear system under a single sinusoid input of 

twice the amplitude. Another useful comparison of the energy 

output can be made with a linear system harvesting from only 

the lower of the two frequencies. In this case, the optimal 

transducer will produce twice the energy of the linear system.  

To verify these results a numeric study was performed. 

This study was performed using Matlab’s ODE45 function. 

The energy output was measured after the system achieved 

steady state, in order to avoid transients affecting the solution.  

The results of this study confirm the analytical derivations 

above. An output of this study can be seen in Figure 6. 

It can be seen that from the linear power equation that the 

power output from the system is proportional to the amplitude 

squared over ω, that is,  
  

 
 [7]. In the special case of    , 

  
      

 
 

   

 
. However, this simple substitution is only 

valid for the special case when    . For a small perturbation 

of the upper sinusoid,       , the power output is 

  
  

 
 

  

      
. Where for a sufficiently small  ,   

   

 
. 

This power output for the slightly perturbed case is half of the 

power output of the case when    . As   grows larger the 

power output becomes   
  

 
 

  

  
. It can be seen that for 

large values of  ,   
  

 
 , which is a quarter of the power 

output seen in the case when    . 
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Figure 6. Numeric simulations of the energy output of the 

optimal transducer as compared to a linear harvester. The 

energy production has been normalized by the energy 

output of both systems at      
 

 SWEPT SIUSOIDAL INPUT 

Another common vibration input is one of a single 

sinusoid with a time dependent frequency. A common 

occurrence of this input type is found in a variety of 

transportation applications. These applications range from the 

quickly varying rotational speed of an automobile tire, as 

experienced by a tire pressure monitor to the slow changing 

excitation experienced by trains. Machinery with an 

unbalanced mass, whose rotational speed is time dependent, 

also experiences this type of excitation such as that found in 

many industrial and manufacturing applications. Another 

occurrence of this input is in structural health monitoring. In 

this application the fundamental frequency of the structure 

changes very slowly with ambient conditions such as 

temperature. 

Using the relationship from equation 13, corresponding to 

the maximum power output, the optimal velocity path as a 

function of the vibration input is described by: 

 

  
  

   

   
   [  (   

 

 
   )  ] (48) 

 

Equation 3 can be used to find the relationship for the 

optimal transducer force and is shown in equation 49. 

However, in this case equation 2 cannot be used to solve for 

the optimal position path of the proof mass    as an analytical 

solution to the integral of   
  can only be expressed through 

the use of Fresnel integrals. This relationship does not allow 

for a direct substitution of a function of    for the optimal 

transducer force.   

 

  
  

   

 
   [  (   

 

 
   )  ]  

 
      

  
           [  (   

 

 
   )  ] (49) 

 

The same substitution, as for the single and double 

sinusoid, can be made for the first term of equation 49 by a 

linear viscous damper model with matched impedance to the 

mechanical damping: 

 

  
          (50) 

 

Here,    is again the time dependent portion of the 

transducer force that cannot be substituted directly by the 

states of the system. 

 

     
    

  
           [  (   

 

 
   )  ] (51) 

 

With the single sinusoid case in mind the mathematical 

framework can be used to check the validity of the assumed 

optimal transducer. Specifically, the optimal transducer is 

assumed to be a linear spring with a time dependent stiffness 

coefficient that is resonant with the input frequency at all 

times. Since the viscous damping which represents energy 

generation is already expressed in equation 50, the missing 

component of the assumed transducer is this time-varying 

spring component. It is assumed that the time dependent 

portion of the transducer force is this time dependent spring. 

Mathematically this assumption is expressed as: 

 

                      

 (          )
 
       (52) 

 

This relationship can be used to find an expression for    

that can subsequently be differentiated for   . To validate the 

accuracy of our assumption in equation 52,    from the 

assumed optimal transducer architecture will be compared to 

  
  in equation 48. 

Substituting equation 51 into equation 52 and solving for 

   yields: 

 

     
   

            
   [  (   

 

 
   )  ] (53) 

 

By differentiation the velocity path of the assumed 

optimal transducer    is found to be: 

 

   
      

            
 
   [  (   

 

 
   )  ]   

   

   
   [  (   

 

 
   )  ] (54) 

 

Examining the two components of equation 54 we can see 

that the second term is identical to the expression of   
  in 

equation 48. The first term of the expression is a transient 

sinusoid with decaying amplitude. An example comparison 

between    and   
  is shown in Figure 7 with unitary values of 

the parameters and a relatively large value for    of 10 Hz/sec. 
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Figure 7. (Top)          

                        
                 . (Bottom) The percentage error 

between the two signals in time. The error quickly decays 

to zero as the amplitude of the transient decays. 

 

The transient component that causes the incongruity 

between    and   
  is only appreciable for large values of    

over small time scales relative to the initial period 
 

  
. In 

application, the value of    will generally be fairly small as 

any structure will require an input of energy to adjust the 

resonance frequency of the system.  

Through this example we have shown that the 

mathematical framework can be used to validate an assumed 

optimal architecture. This framework can be used as a basis of 

comparison between transducer architectures and as a mark of 

feasibility for implementing a vibration energy harvester for a 

given vibration input and power requirement.  

The upper limit for the energy output of the optimal 

transducer for a swept sinusoidal input can be found in the 

same manner as the double sinusoid. By looking at the energy 

balance in equation 4 the energy generated can be described 

as:  

 

     

 ∫ [      
      

  
]    

 

 

 
    ( √       [

   
  

  
]( [

   

√  
]  [

         

√  
]) ( [

   

√  
]  [

         

√  
])   [

   
  

  
])

    √  

 (55) 

 

Where               represent the Fresnel integrals; 

defined as       ∫    [
   

 
]    

 

 
and 

      ∫    [
   

 
]    

 

 
  respectively. Noting the boundedness 

of      and      an approximation of the energy generated over 

large periods of time can be expressed as: 

 

     
    

   
  (56) 

 

This approximation converges more quickly in time for 

large values of the ratio 
   

√  
. That is to say this approximation 

is more accurate for slow changes in the input frequency 

relative to the starting frequency. For relatively large time 

intervals the bounded components of the energy are 

insignificant compared to the time dependent components.  

The average power output can be expressed as: 

 

     
     

  
 

    

   
 (57) 

 

This power output is identical to the power output found 

for a linear system harvesting from a single sinusoid.  It is 

expressed using the damping coefficient, (bm), rather than the 

damping ratio, (m) and therefore, is not an explicit function of 

frequency. 

  

Conclusion 
This paper has outlined a framework necessary to relate 

the form of an input vibration to an optimal transducer force. 

In creating this framework no assumptions of the transducer 

architecture were made. This framework was then applied to 

three case studies. The first was a vibration input of a single 

sinusoid. The optimal transducer was found to be a linear 

viscous damper with matched impedance, and a linear spring, 

resonant to the input frequency. This solution can be 

expressed as a function of the systems states so is considered a 

passive system.  While the solution of this case study seems 

trivial, it accomplishes two objectives.  First, to the author’s 

knowledge this is the first time that the optimal form of the 

transducer force for a sinusoidal input has been explicitly 

proven.  Second, it serves to validate the methodology. 

The second application was an input of the sum of two 

sinusoids at different frequencies. The optimal transducer 

force found was dependent on the difference between the two 

frequencies. In all cases the optimal transducer force consists 

of a linear viscous damper with matched impedance, a linear 

spring, and a time dependent component. This time dependent 

component was found to act as a conservative force, like a 

time dependent spring. The framework was used to find the 

upper limit for power generation. This limit was found to be 

twice the power output of a linear system harvesting only from 

the lower of the two frequency components.  

The final application was for a swept sinusoidal input. 

Here optimal transducer contained two portions, a linear 

viscous damper and a time dependent component. Here an 

assumed solution, based on the optimal solution for a 

stationary sinusoid, was checked against the optimal solution 

of the framework. It was found that the assumed solution 

quickly converged to optimal solution.  

This basic framework could be applied to vibration inputs 

of various forms to determine the upper bound of power 

generation for that type of vibration, and the optimal 

transducer architecture.  If a transducer architecture is 

assumed, a Duffing oscillator for example, this methodology 
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can be applied to determine how close to the assumed solution 

is to the upper bound. 

 

ACKNOWLEDGEMENTS  
Funding for this research was provided by the National 

Science Foundation under Award Number ECCS 1342070. 

 

REFERENCES 
 

[1]  M. F. Daqaq, "On Intentional Introduction of Stiffness 

Nonlinearities for Energy Harvesting Under White 

Gaussian Excitations," Nonlinear Dynamics, vol. 69, no. 3, 

pp. 1063-1079, 2012.  

[2]  B. P. Mann, D. A. Barton and B. A. Owens, "Uncertainty 

in Performance for Linear and Nonlinear Energy 

Harvesting Strategies," Journal of Intelligent Material 

Systems and Structures, pp. 1451-1460, 2012.  

[3]  S. D. Nguyen and E. Halvorsen, "Bistable Springs for 

Wideband Microelectromechanical Energy Harvesters," 

Applied Physics Letters, 2012.  

[4]  M. F. Daqaq, "Influence of potential function asymmetries 

on the performance of nonlinear energy harvesters under 

white noise," Journal of Sound and Vibration, vol. 333, 

no. 15, pp. 3479-3489, 2014.  

[5]  D. Hoffmann, B. Folkmer and a. Y. Manoli, "Comparative 

Study of Concepts for Increasing the Bandwidth of 

Vibration Based Energy Harvesters," PowerMEMs, 2012.  

[6]  A. E. Bryson and Y.-C. Ho, Applied Optimal Control, 

Hemisphere Publishing Corporation, 1975.  

[7]  S. Roundy, P. Wright and J. Rabaey, "A Study of low level 

vibrations as a power source for wireless sensor nodes," 

Computer Communications, vol. 26, no. 11, pp. 1131-

1144, 2003.  

 

 

 

9 Copyright © 2014 by ASME




