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Abstract: This paper outlines a mathematical framework
to determine the upper bound on extractable power as a
function of the forcing vibrations. In addition, the method
described provides insight into the dynamic transducer
forces required to attain the upper bound. The relationship
between vibration parameters and transducer force gives a
critical first step in determining the optimal transducer
architecture for a given vibration source. The method
developed is applied to three specific vibration inputs: a
single sinusoid, the sum of two sinusoids, and a single
sinusoid with a time-dependent frequency. As expected,
for the single sinusoidal case, the optimal transducer force
is found to be that produced by a resonant linear spring
and a viscous damping force, with matched impedance to
the mechanical damper. The resulting transducer force for
the input described by a sum of two sinusoids is found to
be inherently time dependent. The upper bound on power
output is shown to be twice that obtainable from a linear
harvester centered at the lower of the two frequencies.
Finally, the optimal transducer force for a sinusoidal
input with a time-dependent frequency is characterized
by a viscous damping term and a linear spring with a
time-dependent coefficient.

Keywords: vibration energy harvesting, optimization,
transducer dynamics

DOI 10.1515/ehs-2014-0059

1 Introduction

Much recent work in vibration energy harvesting has
focused on structure and transducer designs to improve
power output from vibration sources that are not mod-
eled as a single sinusoidal input. Much of this work has

investigated the use of nonlinearities as a way to increase
energy output (Roundy et al. 2005; Erturk, Hoffmann,
and Inman 2009; Mann, Barton, and Owens 2012;
Daqaq, 2012; Nguyen, Halvorsen, and Paprotny 2013;
Daqaq et al. 2014). These nonlinearities are usually of
the form of a nonlinear spring, such as a Duffing oscilla-
tor. For example, Hoffmann et al. (2012) showed that for
certain vibration inputs a nonlinear mono-stable or bi-
stable oscillator could provide 300% to 500% more
power output compared to a linear system. However,
this work had to assume a form for the restoring force
before the parameters could be optimized for power gen-
eration. Such works give useful insight into the potential
uses of nonlinearities for harvesting from complex vibra-
tion inputs. However, these works do not give a clear
relationship between the parameters that define the
input vibration and the optimal transducer dynamics.

Other researchers have taken the opposite approach,
starting with the vibration excitation and investigating
the optimal transducer architectures to extract the max-
imum power. Daqaq (2010, 2011) showed that for a two-
state system excited by Gaussian white noise the energy
generation was not a function of the transducer’s poten-
tial function. That is to say that the restoring force of the
system does not affect the power generation for a
Gaussian white noise vibration input. This is true for a
two-state system (i.e., the electrical states are not expli-
citly modeled) or when the ratio of mechanical to elec-
trical time constants is small. In the same study, Daqaq
examined the case for filtered white noise, where some
frequencies are more represented than others. In this case
he was forced to assume a form for the potential function
in order to estimate a solution. In further studies, Daqaq
(2012) showed that under certain conditions a bi-stable
restoring force can outperform a standard linear oscilla-
tor-based vibration energy harvester when excited by
Gaussian white noise. This is true when the mechanical
to electrical time constant ratio is small and when the bi-
stable potential function is designed based on the known
intensity of the excitation. Halvorsen (2008, 2013) has
also studied the effect of the electrical time constant on
systems excited by Gaussian noise for both linear and
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nonlinear potential functions. His results support the
general conclusions that under Gaussian white noise
excitation, nonlinearities in the restoring force are bene-
ficial only in specific circumstances, but are not uni-
formly beneficial.

Halvorsen et al. (2013) proved that for an input
described by a single frequency harmonic (i.e., a single
sinusoid) when the proof mass is subjected to viscous
damping, the optimal transducer dynamics are those of a
velocity-damped resonant generator (VDRG; Mitcheson et
al. 2004). While Halvorsen et al. (2013) only applied their
methodology to a single frequency input, their method
could be profitably applied to a wider range of inputs that
represent classes of real world vibrations. This work uses
essentially the same method as Halvorsen et al., but applies
it to two additional test cases. The method both finds the
unconstrained globally optimal relationship between the
input vibration and the force that must be produced by
the transducer, and the upper limit for extractable power
from a given vibration source. We do not explicitly con-
strain the dynamics of the energy harvester, but seek to find
the optimal power output for any type of harvester. The
remainder of this paper is organized as follows. First, the
general model and equations for the optimal transducer
force and power output are developed and applied to a
vibration input characterized by a single stationary fre-
quency. This section can be seen as a review of the method
published by Halvorsen et al. (2013). The procedure is then
applied to a vibration input characterized by two separate,
but stationary, frequencies (i.e., the sum of two sinusoids).
The final test case is a vibration input characterized by a
time-dependent frequency. These two additional test cases
illustrate the way in which the methodology can be used on
more complex vibration sources.

2 Modeling

A simple, generic model for an inertial energy harvester,
as shown in Figure 1, is a kinetic harvester with a generic
transducer force FT that acts on the proof mass. This
generic transducer may contain both energy-dissipative
elements for power generation and energy-conservative
restoring elements. In general, the system is subject to a
forcing function F tð Þ. The inherent mechanical losses that
are found in any real system are approximated by a linear
viscous damper described by a single coefficient bm. This
single-degree-of-freedom system is characterized by a
single displacement x. If the system is excited through
base excitation, as is the normal case for an inertial
generator, then F tð Þ would be the mass mð Þ multiplied

by the base acceleration A tð Þ. In this case the displace-
ment x is the relative distance between the proof mass
and ground. This system is modeled by eq. [1]:

m €xþ bm _x þ FT ¼ F tð Þ ½1�
The second-order differential equation [1] that models
this generic system can be expressed in state space
form by letting x1 ¼ x, and x2 ¼ _x:

_x1 ¼ x2 ½2�

_x2 ¼ 1
m

�bmx2 � FT þ F tð Þð Þ ½3�

An energy balance of the system is used in order to find
an expression for the energy generated by the transducer
as a function of the input. By examining the energy
balance of the system in steady state we can neglect the
kinetic energy of the mass as well as the possible poten-
tial energy stored in the transducer. This is due to the fact
that these energy storage elements are restorative, thus
they do not represent a net energy input or output to the
system while it is in steady state. The energy balance
equations are

Ein ¼ Eout ½4�

Ein ¼
ð
F tð Þx2dt ½5�

Eout ¼
ð
bmx22dt þ Egen ½6�

Substituting eqs [5] and [6] into eq. [4] will yield an
expression for the energy generated as a function of the
input force and the velocity of the proof mass.

Figure 1: A generic inertial generator characterized by a relative
displacement x. Here FT represents the force produced by an
unknown transducer architecture. bm is the coefficient that
characterizes the system’s linear viscous damping due to
inherent mechanical losses of the system.
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Egen ¼
ð
½F tð Þx2 � bmx22�dt ½7�

For more generalized results we can look at the square of
the power to examine a continuous positive definite func-
tional, thereby allowing us to find the critical points in
the magnitude of the energy generated:

J ¼
ð

F tð Þx2 � bmx22
� �2

dt ½8�

Equation [8] now represents the time integral of the square
of the instantaneous power generated by the transducer.
The introduction of J allows for the examination of a posi-
tive definite functional. By examining the critical points of
this functional, as opposed to the instantaneous power, a
third solution is realized, over the two available from look-
ing at the integrand of eq. [7]. As will become apparent
below, this third solution is a minimum which results in
zero energy generation. However, it is instructive to inves-
tigate all stationary conditions, and therefore we have cho-
sen to use the functional J instead of the instantaneous
power generated. If the velocity of the proof mass x2 is
treated as the control parameter, the critical points of the
functional can be found through the stationary condition of
the Euler–Lagrange equation (Bryson, 1975). Taking I to be
the integrand of eq. [8] we have

I ¼ F tð Þx2 � bmx22
� �2 ¼ F tð Þ2x22 � 2bmF tð Þx32 þ b2mx

4
2 ½9�

and the stationary condition to be

dI
dx2

¼ 0 ½10�

In this case the stationary condition yields the critical
points of the energy generated with respect to the velocity
path of the proof mass. Equation [3] can be used to relate
the velocity of the proof mass and the force of the trans-
ducer, FT , acting on the proof mass. This relationship will
allow an expression for the necessary transducer force
such that the proof mass will follow the calculated opti-
mal velocity path for energy generation. Solving the sta-
tionary condition for the critical velocities of x2

dI
dx2

¼ 2F tð Þ2x2 � 6bmF tð Þx22 þ 4b2mx
3
2 ¼ 0 ½11�

F tð Þ � 2bmx2ð Þ F tð Þ � bmx2ð Þx2 ¼ 0 ½12�
By factorization, the resulting three solutions are appar-
ent. Here ⋆ denotes a critical path with respect to the
energy generated.

x?2 ¼
F tð Þ
2bm

½13�

x?2 ¼
F tð Þ
bm

½14�

x?2 ¼ 0 ½15�
These three relationships for x?2 represent the critical
velocity paths which, given a vibration input F(t) to the
system, will result in a minimum or maximum energy
output. By substituting these signals into the second
derivative the type of critical points are determined. The
second derivative is found to be

d2I
dx2

¼ 2F tð Þ2 � 12bmF tð Þx2 þ 12b2mx
2
2 ½16�

At x?2 ¼ F tð Þ
2bm

:

d2I
dx2

¼ 2F tð Þ2 � 6F tð Þ2 þ 3F tð Þ2 ¼ � F tð Þ2 ½17�

which is negative for all input vibrations F(t).
At x?2 ¼ F tð Þ

bm
:

d2I
dx2

¼ 2F tð Þ2 � 12F tð Þ2 þ 12F tð Þ2 ¼ 2F tð Þ2 ½18�

which is positive for all input vibrations F(t).
At x?2 ¼ 0:

d2I
dx2

¼ 2F tð Þ2 ½19�

which is positive for all input vibrations F(t).
From this examination we can conclude that x?2 ¼ F tð Þ

2bm
corresponds to the maximum energy generated by the

transducer for a given input force, while x?2 ¼ F tð Þ
bm

and x?2 ¼ 0 correspond to a minimum amount of energy
generated.

By substituting these relationships into the governing
differential equations [2–3], an expression for the displa-
cement of the proof mass x1 as well as the transducer
force FT can be expressed as a function of the system
properties and the input force.

For x?2 ¼ F tð Þ
2bm

:

x?1 ¼
ð
F tð Þ
2bm

dt ½20�

F?
T ¼ �m _F tð Þ

2bm
þ F tð Þ

2
½21�

Similarly for x?2 ¼ F tð Þ
bm

:

x?1 ¼
ð
F tð Þ
bm

dt ½22�

F?
T ¼ �m _F tð Þ

bm
½23�
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And for x?2 ¼ 0

x?1 ¼ 0 ½24�

F?
T ¼ F tð Þ ½25�

Here, the transducer force, FT , is an explicit function of
time. The optimal transducer can only then be repre-
sented as a function of states if the input and its deriva-
tive can be expressed as a function of the states through
the corresponding relationships of x1 and x2. These
results are summarized in Table 1. Equations [24] and
[25] correspond to the trivial solution of a stationary
condition of the proof mass.

3 Case Study Results

It is difficult to see the relevance of eqs [20–23] in their
general form. To help illustrate the utility of these relation-
ships, three types of vibration inputs were analyzed: a
single sinusoid (i.e., single stationary frequency), a sum of
two sinusoids (i.e., two stationary frequencies), and a sinu-
soid with a time-dependent frequency (i.e., a sine sweep).

3.1 Single Sinusoid Input

First we will look at the relationship that maximizes the
energy output of the system, and then examine the condi-
tions that create minimum energy output. For the max-
imum power condition x?2 ¼ F tð Þ

2bm
, letting F tð Þ ¼ Am sin ωtð Þ

results in the following relationships:

x?1 ¼ � Am
2bmω

cos ωtð Þ ½26�

x?2 ¼
Am
2bm

sin ωtð Þ ½27�

FT? ¼ � Aωm2

2bm
cos ωtð Þ þ Am

2
sin ωtð Þ ½28�

Substituting for x?1 and x?2 :

F?
T ¼ ω2mx1 þ bmx2 ½29�

Similarly for the minimum energy case in which
x?2 ¼ Am

bm
sin ωtð Þ:

F?
T ¼ ω2mx1 ½30�

And for x?2 ¼ 0:

F?
T ¼ F tð Þ ½31�

The three results for the critical transduction force can be
interpreted as follows: for the maximizing condition,

x?2 ¼ F tð Þ
2bm

, the optimal transducer model is a linear spring

and a linear viscous damper for an electrical transducer.
The constant of the linear spring is found to be resonant
with the vibration input and the impedance of the elec-
trical damper is found to be matched to the impedance of
the mechanical damper. That is, bm, from eqs [1] and [3],
is the same value as bm for the transducer in eq. [29]. This
system is a completely passive system, being only a
function of the system’s states. The system is shown in
Figure 2 and modeled by the differential equation [32].

m €xþ2 bm _x þ kx ¼ F tð Þ ½32�
If the form of the transducer force is assumed to be a
linear viscous damper in parallel with a linear spring, the

Table 1: Summary of critical path relationships for a generic input.

Critical velocity path Critical position path Critical transducer force Type

x?2 ¼ F tð Þ
2bm x?1 ¼

ð
F tð Þ
2bm

dt F ?T ¼ �m _F tð Þ
2bm

þ F tð Þ
2

Maximum

x?2 ¼ F tð Þ
bm

x?1 ¼
ð
F tð Þ
bm

dt F ?T ¼ �m _F tð Þ
bm

Minimum

x?2 ¼ 0 x?1 ¼ 0 F ?T ¼ F tð Þ Minimum

Figure 2: Optimal power transducer architecture for an input
F tð Þ ¼ Am sin ωtð Þ, where k ¼ ω2m.
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coefficients that result in maximum power generation are
widely known and have been previously reported
(Roundy, Wright, and Rabaey 2003; Mitcheson et al.
2004; Halvorsen et al. 2013). This framework yielded the
known optimal transducer, without any assumptions on
the form of the transducer. By using this simple vibration
input, with a known solution, this mathematical frame-
work was able to be verified.

For the critical path x?2 ¼ Am
bm

sin ωtð Þ, which corre-
sponds to a minimum power condition the corresponding
transducer force is a linear spring with spring constant
k ¼ ω2m. This system is shown in Figure 3 and modeled
by eq. [33]. While this system has a large response in x1 to
the input F tð Þ ¼ Am sin ωtð Þ; no energy will be converted
to useful electric energy since the system’s only dissipa-
tive element is from parasitic losses due to mechanical
damping. The final relationship x?2 ¼ 0 gives the trivial
stationary solution for the energy output, as previously
mentioned. Under this condition, the transducer force FT
provides an equal and opposite force to the input F tð Þ on
the mass in order to keep the proof mass stationary. In
the case of base excitation, the relative displacement
between the proof mass and ground is zero. Physically
this would be accomplished by the use of an infinitely
stiff spring for the transducer, k ¼ 1.

m €xþ bm _x þ kx ¼ F tð Þ ½33�

3.2 Double Sinusoid Input

A common vibration input is one of two simultaneous
sinusoids at different frequencies. This type of vibration
occurs in rotating machinery where two unbalanced
masses rotate at different rates fixed relative to one
another or in a system where multiple harmonics are
well represented.

The root mean square (RMS) power output scales
with A2 for the standard linear system. Thus, the case
where the amplitudes of the two sinusoids are equal
will be examined. In the case where one sinusoid has
an amplitude much greater than the other, it is reason-
able to assume that the maximum power generation
will be achieved by creating a linear harvester tuned
to the frequency corresponding to the maximum value
of A2

ω . In the case where the two sinusoids are of similar,
but different amplitudes, the following analysis is rele-
vant. The expression for this double sinusoidal input is
shown in eq. [34].

F tð Þ ¼ Am sin ωtð Þ þ sin nωtð Þð Þ ½34�
Here, n 2 0 1ð Þ represents the multiple difference
between the two frequency components.

Examining now only the input-velocity relationship
from eq. [13], which results in the maximum energy out-
put, the optimal velocity signal for an input of two sinu-
soids is obtained as

x?2 ¼
Am
2bm

sin ωtð Þ þ sin nωtð Þð Þ ½35�

Using eqs [20] and [21] the relationships for the optimal
position path and corresponding transducer force to
achieve the velocity response as shown in eq. [35] can
be written as

x?1 ¼ � Am
2ωbm

cos ωtð Þ þ 1
n
cos nωtð Þ

� �
½36�

F?
T ¼ Am

2
sin ωtð Þ þ sin nωtð Þð Þ � Aωm2

2bm
cos ωtð Þ þ ncos nωtð Þð Þ

½37�
Substituting eqs [36] and [35] for x1 and x2 into eq. [37],
where available, yields

F?
T ¼ bmx2 þ ω2mx1 þ TD ½38�

where TD is the time-dependent component of the trans-
ducer force that cannot be directly substituted for by the
system states x1 and x2.

TD ¼ Aωm2

2bm

1
n
� n

� �
cos nωtð Þ ½39�

From eq. [39] it can be seen that when there is only one
frequency component, when n ¼ 1, the amplitude of the
time-dependent portion of the transducer is zero. This
intuitive result for the transducer force shows that as
n ! 1 the amplitude of the time-dependent component
goes to zero and the transducer architecture converges to
the linear harvester as seen for the single sinusoidal

Figure 3: Transduction model for the minimum energy output:
x?2 ¼ F tð Þ

bm
k ¼ ω2mð Þ and x?2 ¼ 0 (k ¼ 1).
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input in eq. [29]. However, as n ! 0 or 1 the amplitude
of the time-dependent portion of the transducer force
grows without bound, as is shown in Figure 4.

The time-dependent component of the transducer force
shows that the true unconstrained optimal transducer
force for an input vibration of this form cannot be rea-
lized by a passive system that is a function of the two
states of the system shown in Figure 1. The optimal force
requires that the transducer introduce new states to the
system or be implemented with active structures that do
work on the system. An example of the optimal restoring
force is shown in Figure 5.

An analysis of a transducer that introduces addi-
tional states is outside the scope of the present study.
The desire here is to simply determine the upper bound
on power generation. To determine this true upper
bound, we need to determine whether the time-depen-
dent force does work adding energy to the system over
time, takes energy from the system, or does no net work
on the system and acts as a conservative element. The net
energy into the proof mass from the time-dependent force
can be calculated by integrating the force over the dis-
placement for a period T of the entire signal:

ETD ¼
ðT
0

TDdx1 ¼
ðT
0

TD � x?2dt ½40�

Substituting eqs [39] and [35] for the time-dependent
portion of the transducer and optimal velocity path,
respectively.

ETD tð Þ ¼ A2ωm3

4b2m

1
n
� n

� �
�
ðT
0

sin ωtð Þ cos nωtð Þð

þ sin nωtð Þ cos nωtð ÞÞdt
½41�

where T is the complete period of the input vibration.
This period can be found by finding the point in time
in which the periods of the two sinusoidal components
simultaneously occur. This can be found by finding
the integer value κ such that κ � n 2 Zþ. The total
period for any input of this form is then defined by
T ¼ 2π

ω κ.

Evaluating eq. [41]:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2
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|

Figure 4: The effect of n on the amplitude of the time-dependent
component of the transducer force.

Figure 5: (Top) The steady-state position of the proof mass versus
time for n ¼ 1.2. This complex path repeats itself every period T of
the input signal. (Bottom) The time-dependent force plotted over the
optimal path x1 over a period T. It can be seen that during one period
the same position is repeated multiple times, but requires a differ-
ent transducer force.

ETD
2π
ω

κ

� �
¼

A2m3 1� �2þ nð Þn� n 1þ nð ÞCos 2κ �1þ nð Þπ½ � þ �1þ n2ð Þ cos 2κnπð Þ2 þ �1þ nð Þn cos 2κ 1þ nð Þπð Þ
� �

8b2n2

½42�
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For the constraints of κ 2 Z and n � κ 2 Z eq. [42] reduces
to zero. This shows that the time-dependent force acts as
a conservative element, not doing any work to the system
over time.

The upper limit for energy output from the optimal
transducer can be shown analytically. This can be accom-
plished in a similar manner to the derivation of the
average power output for the single sinusoid case.
Knowing that from the result of eq. [38] the power output
from the transducer is dissipated by the force of a linear
viscous damper, the instantaneous power dissipated
through this element can be written as

P ¼ F � v ¼ bmx?22 ½43�
Here x?2 is the optimal velocity shown in eq. [35]. Integrating
the instantaneous power output over time yields the total
energy generated by the transducer. Again the upper limit
of the integral is defined as the period of the input.

En ¼
ð2πωκ
0

bmx?22 dt ½44�

The integral is then evaluated in the general case for all
n 2 1;1ð Þ.

En ¼ A2m2T
4bm

½45�

Note that for all n�1, the rms value of the excitation force
is Am. However, for the special case in which n ¼ 1, the
rms value of the excitation force is

p
2 Am, and thus the

upper bound on the energy generated would be double
that shown in eq. [45]. However, if the rms value of the
driving force is normalized to Am for the special case of
n ¼ 1, eq. [45] will still hold. The result is that the upper
bound on power output is not a function of n. Intuitively
this means that if the transducer force given by eqs [38]
and [39] can be generated, all of the power from both
sinusoids could, in theory, be captured.

In order to gain additional insight into eq. [45] a
numerical study was performed in which the energy out-
put over a sufficiently long period was measured for
various values of n. The output of this study is shown
in Figure 6. In one case, the optimal transducer force is
applied to the proof mass. In the second case, the system
is characterized by a linear oscillator whose resonance is
the lower of the two frequencies present in the forcing
vibrations. The output is normalized to the energy gener-
ated by either system at n ¼ 1. As n deviates from 1, the
power output from the linear system quickly drops to ½.
However, the power output from the optimal system
remains constant at 1.

We pause here to reiterate that the results obtained
are specific to a two-state system, position (x1) and velo-
city (x2) in this case. (In other words, the transducer does
not add states to the system.) Of course, it is possible to
add states to the system by introducing additional energy
storage elements as part of the transducer in either the
mechanical or electric domain. If additional states are
introduced, the same results as shown in Figure 6 could
be obtained through complex conjugate matching for the
two frequencies that are represented in the forcing func-
tion. In fact, if the forcing function is well represented by
a set of stable, discrete frequencies, a complex conjugate
matching network could be used to extract the power
from each of the frequencies. However, if the forcing
function contains a continuous band of frequencies, the
complex conjugate matching method will not work. Such
a situation is explored in the third case study below.

The time-dependent force given in eq. [39] is conserva-
tive. It could be implemented, for example, by a trans-
ducer that adds states to the system. Adding states
to the system necessarily takes space (e.g., sprung
mass, inductance) or power (e.g., synthesized impe-
dances). It is a question for a specific system imple-
mentation to determine if the addition of the elements
to produce the time-dependent force is more beneficial
than simply adding extra sprung mass that oscillates at
the lower of the two frequencies represented in the
forcing function. In any case, such an analysis is out-
side the scope of this paper. Our primary goal is to
demonstrate a method to determine the maximum
extractable power.
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Figure 6: Numeric simulations of the energy output of the optimal
transducer (orange) as compared to a linear harvester (blue) as a
function of n, the separation between the two sinusoids in the
forcing function. The energy produced by the optimal transducer
(top line) is independent of n. The energy production has been
normalized by the energy output of both systems at n ¼ 1.
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3.3 Swept Sinusoid Input

Another common vibration input is one of a single sinu-
soid with a time-dependent frequency. A common occur-
rence of this input type is found in a variety of
transportation applications. These applications range
from the quickly varying rotational speed of an automo-
bile tire, as experienced by a tire pressure monitor, to the
slow changing excitation experienced by trains.
Machinery with an unbalanced mass, whose rotational
speed is time dependent, also experiences this type of
excitation. Another occurrence of this input is in struc-
tural health monitoring. In this application the funda-
mental frequency of the structure changes very slowly
with ambient conditions such as temperature.

Using the relationship from eq. [13], corresponding to
the maximum power output, the optimal velocity path as
a function of the vibration input is described by

x?2 ¼
Am
2bm

Sin 2π f0 þ 1
2
frt

� �
t

� 	
½46�

Equation [3] can be used to find the relationship for the
optimal transducer force and is shown in eq. [47].
However, in this case eq. [2] cannot be used to solve for
the optimal position path of the proof mass x1 as an
analytical solution to the integral of x?2 can only be
expressed through the use of Fresnel integrals. This rela-
tionship does not allow for a direct substitution of a
function of x1 for the optimal transducer force:

F?
T ¼ Am

2
Sin 2π f0 þ 1

2
frt

� �
t

� 	

� πAm2

bm
f0 þ frtð ÞCos 2π f0 þ 1

2
frt

� �
t

� 	 ½47�

The same substitution as for the single and double sinu-
soid can be made for the first term of eq. [47] by a linear
viscous damper model with matched impedance to the
mechanical damping:

F?
T ¼ bmx2 þ TD ½48�

Here, TD is again the time-dependent portion of the
transducer force that cannot be substituted directly by
the states of the system:

TD ¼ � πAm2

bm
f0 þ frtð ÞCos 2π f0 þ 1

2
frt

� �
t

� 	
½49�

With the single sinusoid case in mind, the mathematical
framework can be used to check the validity of an
assumed optimal transducer. Specifically, the optimal
transducer is assumed to be a linear spring with a time-
dependent stiffness coefficient that maintains resonance

with the input frequency at all times. Since the viscous
damping which represents energy generation is already
expressed in eq. [48], the missing component of the
assumed transducer is this time-varying spring compo-
nent. It is assumed that the time-dependent portion of the
transducer force, given in eq. [49], is this time-dependent
spring. Mathematically, this assumption is expressed as

TD ¼ k tð Þx1 ¼ ω tð Þ2mx1 ¼ 2π f0 þ frtð Þð Þ2mx1 ½50�
This relationship can be used to find an expression for x1
that can subsequently be differentiated for x2. To validate
the accuracy of our assumption in eq. [50], x2 from the
assumed optimal transducer architecture will be com-
pared to x?2 in eq. [46].

Substituting eq. [49] into eq. [50] and solving for x1
yields

x1 ¼ � Am
4πbm f0 þ frtð ÞCos 2π f0 þ 1

2
frt

� �
t

� 	
½51�

By differentiation the velocity path of the assumed opti-
mal transducer x2 is found to be

x2 ¼ Amfr
4πbm f0 þ frtð Þ2 Cos 2π f0 þ 1

2
frt

� �
t

� 	

þ Am
2bm

Sin 2π f0 þ 1
2
frt

� �
t

� 	 ½52�

Examining the two components of eq. [52] we can see that
the second term is identical to the expression of x?2 in
eq. [46]. The first term of the expression is a transient
sinusoid with decaying amplitude. An example compar-
ison between x2 and x?2 is shown in Figure 7 with unitary
values of the parameters and a relatively large value for fr
of 10Hz=sec.

The transient component that causes the incongruity
between x2 and x?2 is only appreciable for large values of
fr over small time scales relative to the initial period 1

f0
. In

application, the value of fr will generally be fairly small
as any structure will require an input of energy to adjust
the resonance frequency of the system.

Through this example we have shown that the math-
ematical framework can be used to validate an assumed
optimal architecture. This framework can be used as a
basis of comparison between transducer architectures
and as a mark of feasibility for implementing a vibration
energy harvester for a given vibration input and power
requirement.

The upper limit for the energy output of the optimal
transducer for a swept sinusoidal input can be found in
the same manner as the double sinusoid. By looking at
the energy balance in eq. [4] the energy generated can be
described as
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where C½ � and S½ � represent the Fresnel integrals defined

as C v½ � ¼ Ðv
0
Cos πt2

2

h i
dt and S v½ � ¼ Ðv

0
Sin πt2

2

h i
dt, respec-

tively. Noting the boundedness of C½ � and S½ � an approx-
imation of the energy generated over large periods of
time can be expressed as

Egen ffi A2m2

8bm
t ½54�

This approximation converges more quickly in time for

large values of the ratio 2f0ffiffiffi
fr

p . That is to say this approx-

imation is more accurate for slow changes in the input
frequency relative to the starting frequency. For relatively
large time intervals the bounded components of the
energy are insignificant compared to the time-dependent
components.

The average power output can then be expressed as

PRMS ¼ dEgen
dt

¼ A2m2

8bm
½55�

This power output is identical to the power output found
for a linear system harvesting from a single sinusoid. It is
expressed using the damping coefficient, bm, rather than
the damping ratio, ζm, and therefore is not an explicit
function of frequency.

4 Conclusions

This paper has outlined a framework necessary to relate
the form of an input vibration to an optimal transducer
force. In creating this framework no assumptions of the
transducer architecture were made. This framework was
then applied to three case studies. The first was a vibra-
tion input of a single sinusoid. The optimal transducer
was found to be a linear viscous damper with matched
impedance, and a linear spring, resonant to the input
frequency. This solution can be expressed as a function
of the system states and so is considered a passive sys-
tem. While the solution of this case study seems trivial, it
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Figure 7: (Top) Velocity trajectories for the assumed optimal ðx2Þ and actual optimal x?2
� �

versus time for A ¼ 1;m ¼ 1; bm ¼ 1; f0 ¼ 1; fr ¼ 10.
(Bottom) The percentage error between the two signals in time. The error quickly decays to zero as the amplitude of the transient
decays.

Egen ¼
ðt
0

F tð Þx?2 � bmx?2
2

h i
dτ

¼
A2m2 2

ffiffiffiffi
fr

p
t þ Cos

2f20π
fr

" #
C

2f0ffiffiffi
fr

p
" #

� C
2 f0 þ frtð Þffiffiffiffi

fr
p

� 	 !
þ S

2f0ffiffiffi
fr

p
" #

� S
2 f0 þ frtð Þffiffiffiffi

fr
p

� 	 !
Sin

2f20π
fr

" # !

16bm
ffiffiffiffi
fr

p

½53�
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demonstrates the method and validates it against a
known solution.

The second application was an input consisting of
the sum of two sinusoids at different frequencies. The
optimal transducer force found was dependent on the
difference between the two frequencies. In all cases the
optimal transducer force consists of a linear viscous dam-
per with matched impedance, a linear spring, and a time-
dependent component. This time-dependent component
was found to act as a conservative force, like a time-
dependent spring. The framework was used to find the
upper limit for power generation. This limit was found to
be twice the power output of a linear system harvesting
only from the lower of the two frequency components.

The final application was for a swept sinusoidal
input. In this case, the optimal transducer contained
two portions, a linear viscous damper and a time-depen-
dent component. Here an assumed solution, based on the
optimal solution for a stationary sinusoid, was checked
against the optimal solution of the framework. It was
found that the assumed solution quickly converged to
the optimal solution. This case study demonstrates
another methodological procedure in which the frame-
work can be used. Specifically, one can assume a solu-
tion and then check its performance against the globally
optimal solution.

This basic framework could be applied to vibration
inputs of various forms to determine the upper bound of
power generation for that type of vibration, and the opti-
mal transducer architecture. If a transducer architecture
is assumed, a Duffing oscillator for example, this metho-
dology can be applied to determine how close the
assumed solution is to the upper bound.
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