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ABSTRACT  

A tremendous amount of research has been performed on the design and analysis of vibration energy harvester 
architectures with the goal of optimizing power output; most studies assume idealized input vibrations without paying 
much attention to whether such idealizations are broadly representative of real sources. These “idealized input signals” are 
typically derived from the expected nature of the vibrations produced from a given source. Little work has been done on 
corroborating these expectations by virtue of compiling a comprehensive list of vibration signals organized by detailed 
classifications. Vibration data representing 333 signals were collected from the NiPS Laboratory “Real Vibration” 
database, processed, and categorized according to the source of the signal (e.g. animal, machine, etc.), the number of 
dominant frequencies, the nature of the dominant frequencies (e.g. stationary, band-limited noise, etc.), and other metrics. 
By categorizing signals in this way, the set of idealized vibration inputs commonly assumed for harvester input can be 
corroborated and refined, and heretofore overlooked vibration input types have motivation for investigation. An initial 
qualitative analysis of vibration signals has been undertaken with the goal of determining how often a standard linear 
oscillator based harvester is likely the optimal architecture, and how often a nonlinear harvester with a cubic stiffness 
function might provide improvement. Although preliminary, the analysis indicates that in at least 23% of cases, a linear 
harvester is likely optimal and in no more than 53% of cases would a nonlinear cubic stiffness based harvester provide 
improvement.   
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1. INTRODUCTION  

In order to extract sufficient power for a given application, vibration energy harvesters (VEHs) are typically high Q (10-
50) resonant oscillators. Thus, their operating bandwidth can be quite narrow. This has motivated an extraordinary amount 
of research work on methods to increase the operating bandwidth of VEHs 1–5. Such methods include multi-mode dynamic 
structures, active frequency tuning by both mechanical and electrical means, and nonlinear dynamic structures. Of course, 
if the vibration source is dominated by a single stationary frequency, a linear oscillator based energy harvester is the 
optimal energy harvesting structure 6–9. 

In the search for methods to improve the operating bandwidth of VEHs, careful examination and quantification of the 
types of vibrations that appear frequently in environments conducive to energy harvesting often becomes a secondary 
priority; to our knowledge, there has not been a systematic study of the prevalence of vibration sources geared towards 
determining which VEH structure would be most appropriate for a given source. 

A typical approach to the treatment of vibration sources as seen in VEH research may involve any number of the following: 

Oversimplification of the source description – of the sparse collections of vibration sources in the literature, many simplify 
the description of the vibrations down to only the spectral content of the vibration; that is, the component frequencies of a 
vibration signal and their amplitude, with limited discussion of vibration features10,11. Such simplifications omit key 
information about the vibration source, such as the consistency of the amplitude and frequency over the duration of the 
source signal, and the specific way in which those parameters vary over the length of the signal. The design of VEHs in 
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the absence of such information is often suboptimal12. Beeby13 does present the time varying nature of a limited set of 
vibration signals. One goal of this paper is to present and classify the important features of a broader set of vibration 
sources. 

Create a vibration waveform for mathematical convenience – in some cases, it is mathematically convenient to subject a 
system model to a particular vibration waveform for the purpose of analytical analysis that might be difficult or impossible 
to carry out with more complex inputs. Such fabrications are often (but not always) performed with a source in mind – a 
single, stationary frequency of vibration for a machine source, for example, or a shifting frequency for a vehicle source – 
and may appear to be a plausible representation of some vibration source. Another mathematically convenient 
representation of source vibration is Gaussian white noise, band-limited white noise, or filtered white noise. However, 
when these vibrational input models are employed in the literature, a discussion regarding the conditions under which the 
proposed waveform accurately captures the salient properties of the source is often absent, rendering the applicability of 
such a source model unclear; in other words, the mathematically convenient source model may not be a valid model for 
the real sources upon which the model is based. The prevalence with which one may encounter the vibration source under 
consideration is also often ignored.; that is, a proposed waveform may model a real vibration signal very well, but such a 
signal may be so uncommon that the proposed waveform (and subsequent analysis) is of limited use 14–16. 

Investigate a small sample of vibration sources – many studies simply look at a very small sample of vibration sources. 
Although this approach is, perhaps, more based in reality than creating a vibration signal for mathematical convenience, 
it makes it impossible to make broad claims about the nature of a vibration source and its relationship with the vibration 
waveform and, consequentially, the relationship between the nature of a vibration source and the expected performance of 
a particular VEH architecture 13,17. 

The current study seeks to provide additional insight into the prevalence and characteristics of vibrations commonly 
encountered in the environment. A broad range of vibrations from the existing NiPS Laboratory “Real Vibration” database 
is classified using metrics that capture vibration properties that are relevant to VEH design. A preliminary analysis is then 
performed as a means to gain some initial insight into optimal architectures for common classes of vibrations. 

 

2. METHODOLOGY FOR CLASSIFYING VIBRATIONS 

The NiPS Laboratory “Real Vibration” database is a library of downloadable vibration signals collected from several types 
of acquisition kits 18. 

One of the most commonly used acquisition devices, as reported by the signal metadata in the NiPS database, is an iPhone, 
and signals collected using an iPhone are uploaded via an iPhone application freely available to the public. Many of the 
vibration signals have been recorded and uploaded by unknown users, using the iPhone accelerometer as a sensor, and 
lack information on the conditions under which the vibration signal was recorded. Additionally, the specific iPhone model 
used to collect the data is generally not reported in the signal metadata, although all signals collected with an iPhone report 
a sampling frequency of 100Hz. Consequentially, many signals are not worth examination; there are numerous short 
signals on the database that clearly represent test uploads or calibrations, for example, or signals for which the reported 
sampling rate could not possibly resolve the source described in the metadata (e.g. attempting to resolve the sounds of an 
acoustic guitar). It thus stands to reason that an analysis that makes use of a database that freely allows for users to upload 
content as a source of vibration signals requires the judicious selection of a subset of signals hosted on the database in 
order to ensure that the analysis is capable of producing useful conclusions. Much of the efforts of this study concerned 
carefully examining each signal upload, using the associated sampling frequency and signal metadata to determine if the 
uploaded signal appears to be capable of capturing the salient vibrational characteristics of the source. As a result of this 
signal “qualification” process, many of the signals from the database were discarded from analysis in this study. 

Each signal upload consists of 3 axes of vibrational data; linear acceleration of X, Y and Z, measured in units of g. Each 
of the 3 axes is treated as an independent signal for processing purposes. DC bias was removed from each signal axis by 
subtracting the mean value from the data. For each signal axis, spectrograms of using different cutoff frequencies and FFT 
window lengths were generated using the associated sampling frequency metadata, resulting in several spectrograms for 
each signal axis. 

A discussion on the classification methodology requires establishing several definitions.  
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2.1 Signal Sources 

The “source” classification of a signal is a broad categorization of what kind of system produced the vibration. 

The Animal source classification indicates that the vibration signal was produced by a living organism – typically a human, 
and typically during locomotion. 

The Machine source classification indicates that the vibration signal was produced by something non-biological; typically, 
this is a machine or an appliance in operation. 

The Vehicle source classification indicates that the vibration signal was produced by a vehicle – a machine capable of 
transporting human beings – during operation. The Vehicle classification supersedes the Machine classification when it 
can be determined that the machine which produced the signal is a vehicle during operation. 

The Structure source classification indicates that the vibration signal was acquired from a static structure, such as a 
building, bridge, or tower. 

The Unknown source classification indicates that it is not clear from where the vibration signal originates. 

This vibration classifier is determined using both the title of the uploaded vibration file (“Airplane, light turbulence,” for 
example) and the comments that are uploaded along with the vibration signal (continuing with the same example, “Boing 
[sic] 707, inflight light turbulence. Passenger armrest”). When the source of the vibration cannot be surmised with 
confidence, the signal is given the Unknown source classification. 

2.2 Spectrogram Parameters 

The entire NiPS database of vibration signals was downloaded and processed into spectrograms for each of the 3 axes, 
using several sets of parameters, generating several spectrograms per vibration signal.  

There were two parameters that were varied in generating the spectrograms: the cutoff frequency (below which all spectral 
content of a signal was ignored) and the FFT (Fast Fourier Transform) “window” length. 

A cutoff frequency was required in generating the spectrograms, as many of the signals contained high-amplitude, very 
low-frequency content that could not be removed by elimination of DC bias. It is suspected that this low-frequency content 
is caused by gradual changes in orientation of the acquisition device during recording; because the conditions under which 
the vibration signals were recorded are mostly unknown, one can only speculate as to a cause. Four cutoff frequencies 
were used to generate all spectrograms: 10Hz, 5Hz, 1Hz, and 0.25Hz. 

The FFT window length was varied between 1s and 4s, resulting in a frequency resolution of 1Hz and 0.25 Hz, respectively. 
This was done to accurately resolve the small variations in frequency that one would expect in human walking data; 
consequentially, an FFT window of 4s was only used for signals that involve human locomotion. 

In order to make dominant signals more apparent, a filtered technique was employed based in linear VEH theory. 
According to the Velocity Damped Resonant Generator (VDRG) model 19, the upper bound on average power output of a 
linear VEH subject to harmonic excitation is: 

 

𝑃"#$ =
𝐴'𝑚𝜁*𝑟,

𝜔 1 − 𝑟' ' + 2𝑟 𝜁2 + 𝜁*
'  (1) 

 

where A is the input acceleration amplitude, m is the seismic mass, ζm is the mechanical damping ratio, ζe is the electrical 
damping ratio, and r is the frequency ratio; that is, the ratio of ω (the input frequency) to the harvester’s natural frequency, 
ωn. At resonance (i.e. r = 1), equation (1) reduces to 
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𝑃"#$ =
𝐴'𝑚𝜁*

4𝜔 𝜁2 + 𝜁* ' (2) 

Using equation (2), it can be shown that the average power during resonance is maximum when 𝜁2 = 𝜁* 19. 

Notice that the leading terms A2 and ω in (1) and (2) are properties of the input alone. Determining dominant frequencies 
is a major component of the classification system presented in this study; thus, in order to make classification more 
straightforward, spectrograms filtered by only plotting frequency content that is greater than ½ the maximum value of 
𝐴' 𝜔 in each FFT frame were plotted alongside unfiltered spectrograms; components of the input with large 𝐴' 𝜔 values 
have the potential to produce more power for a linear VEH than other signals within the input. This filtering process made 
“dominant” frequencies more distinct, resulting in easier classification of the signal. See 2.3 for more discussion on 
dominant frequencies, and section 3.1 for some example spectrograms and their classifications. 

2.3 Signals with Distinct Dominant Frequencies  

Knowledge of the frequencies at which the input power is concentrated has major implications on the design of a VEH 
architecture, and is therefore of critical importance in any classification scheme intended to shed light on the kinds of 
vibrations that could be encountered by VEHs.  

A dominant frequency in the context of this study is a distinct frequency in the signal spectrogram at which the value of 
𝐴' 𝜔 is large relative to other frequencies, that persists for a substantial duration of the signal. Because the filtered 
spectrogram is filtered by considering only values of 𝐴' 𝜔 that are greater than ½ the largest value of 𝐴' 𝜔 in each FFT 
frame, this definition implies that a dominant frequency is a thin (i.e. distinct), mostly continuous curve on the spectrogram 
extending for a substantial duration of the signal. Vibration signals may have zero, one, or more dominant frequencies. 
Note that the term dominant frequency is derived from the degree to which a particular frequency dominates (in terms of 
𝐴' 𝜔 value) a single FFT window, and is thus somewhat of a misnomer; a dominant frequency needs to remain at a single 
frequency throughout the length of the spectrogram. See below.  

The time-varying behavior of the dominant frequencies throughout the duration of the signal is also used for classifying 
the signal, as a VEH input with frequency content that is expected to shift with time has major implications on the design 
of a VEH. A dominant frequency is considered stationary if the frequency at which it occurs does not change much during 
the length of an input signal. It is possible for some, all, or none of the dominant frequencies of a signal to be stationary. 
See section 3.1 for some example spectrograms and their classifications. 

2.4 Signals without Distinct Dominant Frequencies 

Many vibration signals do not have distinct, dominant frequencies. Many of these signals can be best described as white 
noise and filtered noise. For simplicity of classification, two classifiers were employed in this study to describe signals 
without distinct, dominant frequencies. 

The White Noise classification applies to signals with distributed frequency content that spans the entire sampling range. 

The Filtered Noise classification describes signals that have frequency content distributed over a specific band of 
frequencies, with relatively little content outside of that band. 

A small subset of spectrograms could not be classified according to the proposed classifications scheme. If no appropriate 
descriptor exists for a spectrogram, then that spectrogram is classified as “NA.”   

2.5 Amplitude and Noise Tags 

Vibrations with inconsistent acceleration amplitudes present unique challenges to nonlinear VEH designs, where both the 
amplitude and frequency of an input vibration have the capacity to dramatically affect the power output. In order to catalog 
vibrations with significant swings in amplitude without creating another classification dimension, an amplitude tag is 
applied to all vibrations that change at least (an arbitrarily selected) 50% over the length of the signal. 

In the case of a signal with distinct, dominant frequencies, it is common to observe these dominant frequencies amidst 
significant levels of surrounding frequency content. The noise tag is applied to all signals that contain dominant 
frequencies that are embedded in significant, nearby frequency content. The noise tag is a statement about two, intimately 
related characteristics of a signal; firstly, it is, by definition, a statement about significant levels of frequency content 
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outside of the dominant frequency or frequencies. Secondly, it is a statement about the difficulty of declaring a specific 
dominant frequency as “distinct;” when a dominant frequency is embedded in “noise,” it obfuscates the dominant signal, 
often making it difficult to classify as “distinct” in the first place.  

2.6 Classification Methodology  

The entire NiPS database of signals was first downloaded, along with the signal metadata, by virtue of an automated script; 
at the time of execution, the script downloaded a total of 329 different signals, each with X, Y and Z channels. The script 
then fed the signal data and metadata into MATLAB so that spectrograms could be created for each axis of the signal. The 
metadata was packaged into a Comma Separated Value (CSV) file, with each line of the CSV file representing a single 
axis of a signal. Each line in the CSV file was associated with a particular set of spectrograms that varied in their cutoff 
frequencies and FFT window lengths. 

The signals, with their associated metadata and spectrograms, were then manually inspected. Signals that were obvious 
test or calibration uploads (determined by their brevity and title) were discarded. Signals that were obviously erroneous, 
such as those attempting to resolve high-frequency phenomenon (as determined by the comments or title) using a slow 
(e.g. 100Hz) sampling rate, were then discarded. Signals that contained only extremely low-frequency content, such that 
their associated spectrograms only contained content at the cutoff frequency (10Hz, 5Hz, 1Hz, or 0.25Hz) were discarded. 
This process removed 218 signals, leaving 111 left for the study. 

Each of the 111 signals contains X, Y and Z data, and each axis of each signal had 5 associated spectrograms. These 
spectrograms were manually inspected to determine which combination of the two spectrogram parameters (cutoff 
frequency and FFT window length) resulted in a spectrogram that accurately captured the nature of the vibration. One 
spectrogram was chosen for each axis of each signal, resulting in a total of 333 spectrograms requiring classification. 

The classification of each spectrogram was performed manually, by visual inspection of both the spectrogram image file, 
as well as the (interactive) MATLAB-FIG file. Many spectrograms had obvious classifications, and many others were far 
more difficult to classify; see section 3.1 for some example spectrograms and their classifications, and section 4.2 for a 
discussion of classification subjectivity. 

 

3. VIBRATION CLASSIFICATION RESULTS 

3.1 Example Spectrograms 

In order to better elucidate the classification procedure, this section contains several spectrograms from the study, and an 
explanation of how their classifications were determined. 
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Figure 1 - Spectrogram of a Machine signal with the title "Air pump" 

A spectrogram representing the signal from an air pump is shown in Figure 1. The top graph in the image, titled “Air pump 
(Z direction)” is a filtered spectrogram, created using the method discussed in section 2.2. The bottom graph in the image, 
titled “Air pump (Z Direction, Unfiltered)” is an ordinary spectrogram. The signal title “Air pump,” coupled with the 
comment “Fish air pump” collected from the signal metadata, indicates that the most appropriate source classification is 
Machine. Two, consistently high-amplitude signals are apparent in both the filtered and unfiltered spectrograms, and these 
two signals do not change in frequency with time. Thus, this signal is described as having two dominant, stationary 
frequencies. Although the amplitude of the 44Hz dominant frequency remains consistent over the length of the signal, the 
lower 35Hz signal has several periods of multiple seconds where the amplitude falls dramatically. Thus, this signal is given 
the amplitude tag, indicating inconsistency in signal amplitude. Finally, the filtered spectrogram makes it very clear that 
there are no significant levels of frequency content surrounding the dominant frequencies, so this signal does not receive 
the noise tag. 

 

 
Figure 2 - Spectrogram of a Vehicle signal titled "Car in highway" 
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Figure 2 is a spectrogram titled “Car in highway.” The metadata indicates a particular car model and driving speed, so this 
signal receives the Vehicle source classification. A single, dominant frequency is very apparent in the filtered spectrogram, 
and it is clear that it shifts frequency with time, eventually approaching a steady state frequency. This spectrogram is 
classified as having a single, dominant frequency that is nonstationary. Inconsistency in the signal amplitude means that 
this signal also receives the amplitude tag. Although some significant spectral content surrounds the dominant frequency 
during (what appears to be) a startup period, this additional significant content does not continue for a substantial portion 
of the signal, and thus this signal does not receive the noise tag. 

 
Figure 3 - Spectrogram of a Vehicle signal titled "Car highway" 

Figure 3 is a signal from a vehicle source. One dominant frequency is consistent throughout the length of the signal, 
although it almost appears as if another dominant frequency appears approximately 70s into the signal, and merges with 
the first dominant frequency at approximately 120s. Because it is not clear that this frequency is indeed a second dominant 
frequency due to the abundance of significant nearby spectral content, this signal is classified as having a single, dominant, 
nonstationary frequency, and is given both the amplitude and noise tags.  

 
Figure 4 - Spectrogram of a Vehicle signal titled "Chicago metro" 
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Figure 4 illustrates some of the difficulties of classifying signals according to a simplified schema. It is clear from the 
filtered spectrogram that significant levels of vibration content exist over a small band of frequencies. However, a faint, 
distinct line can be seen at approximately 41Hz that exists over the length of the signal. Is this a single, dominant frequency 
embedded in noise, or is this simply filtered noise? It was determined that the classification that best suited this signal is 
filtered noise, as content of significant amplitude exists over a band of frequencies for the duration of the signal, and the 
faint line at 41Hz does not appear distinct enough to be called dominant. This spectrogram received the amplitude tag, as 
large changes in amplitude exists throughout the duration of the signal. 

 
Figure 5 - Spectrogram of a Machine signal titled "Electric hand shaver" 

Figure 5 constitutes an excellent example of what is considered a White Noise signal. In this case, the filtered spectrogram 
does nothing to assist in this classification, as the filtering method favors lower-frequency content. See section 2.2. 

 
Figure 6 - Spectrogram of a Vehicle signal titled "Airplane, light turbulence" 

Finally, Figure 6 is another example of a single, dominant frequency, embedded in significant additional spectral content 
(noise tag) with varying amplitude (amplitude tag). Although another, lower frequency trace appears at approximately 
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22Hz, below the more significant one at 34Hz, the filtered spectrogram makes it clear that this signal should not be 
considered significant relative to the higher frequency one. 

3.2 Breakdown of Signals by Source 

A total of 333 spectrograms were analyzed for the study. A breakdown of all signals by source classification is presented 
in Figure 7. 

 
Figure 7 - All 333 signals from the study, sorted by source classification 

The largest source category is Vehicle (147 spectrograms), while the smallest source categories were Structure sources 
(33 spectrograms) and Unknown sources (21 spectrograms). The number of Animal and Machine sources was identical 
(66 spectrograms). 

3.3 Breakdown of Signals by Spectrogram Classification 

A breakdown of all signals by spectrogram classification is presented in Figure 8. 

 
Figure 8 - All 333 signals from the study, sorted by spectrogram classification 
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Most of the signals analyzed in the study can be classified as having a single, dominant frequency. Over a quarter of the 
total signals can be characterized as lacking a dominant frequency, and are better described by either the White Noise or 
Filtered Noise categories. A relatively small number of the signals could be classified as having more than one distinct, 
dominant frequencies. 

3.4 Breakdown of Individual Source Classifications 

Perhaps most the most important results concern how the signals were characterized for each source. Figure 9 shows the 
breakdown of characterizations for the Animal sources analyzed in the study. 

 
Figure 9 - Breakdown of Animal sources 

The majority of Animal signals can be described as having dominant frequencies that are nonstationary. A considerable 
portion of the Animal signals can be described as having dominant signals that are stationary. 

 
Figure 10 - Breakdown of Machine sources 

Figure 10 shows the breakdown of characterizations for Machine sources. 58% of the Machine sources analyzed contained 
dominant frequencies that remained stationary with time. 30% of the Machine sources generated spectrograms that could 
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best be described as “noise;” 23% received the “White Noise” classification, and 7% received the “Filtered Noise” 
classification. 

 
Figure 11 - Breakdown of Vehicle sources 

Figure 11 shows the breakdown of characterizations for Vehicle sources. Vehicle sources have the most variability in their 
characterizations; no one category dominates over the others. Dominant frequencies constitute the largest combined 
category, making up 62% of the classifications. The largest single category is “All Nonstationary,” consuming 31% of the 
total characterizations. This is, perhaps, no surprise; as a vehicle accelerates and decelerates, it is reasonable to assume 
that the vibrational characteristics will vary with time. “All Stationary” is the second largest category. This may be 
explained by steady-state vehicle motion; a car moving at constant speed on a highway, for example, may not have any 
vibrational characteristics that change over the length of the signal. 

 
Figure 12 - Breakdown of Structure sources 

Figure 12 shows the breakdown of characterizations for Structure sources. The majority (64%) of the signals derived from 
Structure sources can best be described as “noisy;” 52% fall under the Filtered Noise category, and 12% fall under the 
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White Noise category. 27% can be described as having dominant frequencies that are stationary with time. This leaves a 
mere 3% that can be described as having dominant frequencies that change in time. 

3.5 Amplitude Tag 

Recall that another important piece of information relevant to VEH design is the time dependence of the vibration 
amplitude, and that this information is conveyed in this study by virtue of an amplitude tag. The amplitude tag can be 
applied to all classifiable signals; that is, signals not classified as “NA.” 

 
Figure 13 - Prevalence of the amplitude tag, broken down by source classification 

Figure 13 displays the frequency with which the amplitude tag was applied to signals, sorted by source classification. It is 
very clear that time-dependence of vibration amplitude is common in real-world vibration signals, regardless of source. 

3.6 Noise Tag 

Recall that the noise tag is applied to all signals that contain dominant frequencies that are embedded in significant, nearby 
frequency content; therefore, it is only meaningful when applied to signals with dominant frequencies. 
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Figure 14 - Prevalence of the noise tag, broken down by source classification 
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Figure 14 displays the frequency with which the noise tag was applied to signals that can be classified as having dominant 
frequencies. It can be surmised from the figure that, even in the case of a signal best described as having dominant 
frequencies, it is very common for those dominant frequencies to be embedded in significant, nearby frequency content. 

 

4. DISCUSSION 

4.1 Classifications and Relationship to VEH Design 

The study classified a broad range of vibrations from an existing database in order to inform the VEH researcher of the 
prevalence and characteristics of vibrations seen in real world environments. 

The study of 333 signals from the NiPS Real Vibrations database resulted is several interesting conclusions about the 
available dataset: 

The majority of signals do not maintain constant amplitude excitations. This appears to be the case regardless of the source 
classification. 

No single vibration classification appears to describe a single source classification universally. With the exception of the 
Unknown source classification (not discussed), the greatest portion that any single signal classification consumes within a 
single source is 64% (All Nonstationary, Animal). This suggest that proper modelling of a signal from a known source 
requires more information than simply the source classification of the signal. 

Most Animal sources are best described as having distinct dominant frequencies that move with time. 65% of the signals 
with the Animal source classification have a dominant component that moved in time. Additionally, nearly half of the 
Animal signals were embedded in significant levels of noise, as indicated by the number of signals given the noise tag. 

Most Machine sources are best described as having distinct dominant frequencies that are stationary, and a substantial 
portion can best be described using noise. 58% of the Machine sources analyzed contained dominant frequencies that 
remained stationary with time, and 9% contained dominant frequencies that moved with time. 30% of the Machine sources 
generated spectrograms that could best be described as “noisy;” that is, 23% received the “White Noise” classification, 
and 7% received the “Filtered Noise” classification. 

No single classification dominates the description of Vehicle vibrations. Signals with the Vehicle source classification 
expressed the most variety in their signal classifications. 

Most Structure sources can be described by some type of noise. The White Noise and Filtered Noise signal classifications 
constitute a combined 64% of signals that also have the Structure source classification. Nearly all of the remaining signals 
were classified as having stationary dominant frequencies. Of the signals classified using dominant frequencies, half 
received the noise tag. 

In the case of the single dominant, stationary frequency, it seems unlikely that a novel structure could provide any 
substantial increase to the maximum power output over a harvester based on a linear oscillator (i.e. characterized by the 
VDRG model). In fact, it has been shown that for the case of a simple harmonic input, a properly designed linear harvester 
represents the limiting case of harvester power output8,9. Of all the signals in the study, approximately 23% are 
characterized by a single dominant, stationary frequency. 

If the signal can be classified as having multiple dominant, stationary frequencies, then it may be possible to harvest more 
power from such a signal than could be harvested by a well-designed linear harvester.  For example, a multi-mode or 
wideband harvester might outperform the standard linear oscillator in certain cases. Of all signals in the study, 
approximately 6% are characterized by multiple stationary frequencies.   

For signals with dominant frequencies that move in time, a tunable harvester would appear to be an appropriate architecture 
choice, depending on the amount that the frequencies move with time, the characteristic frequency with which the 
frequencies move, and the tuning power costs of the harvester. Wideband harvester architectures could also provide benefit 
for this class of signal; harvesters with multiple vibratory modes, for example, or harvesters that employ nonlinear 
dynamical structures have the potential to provide an increase in power over a linear counterpart with a single resonant 
peak. 
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Much research has been focused on wideband harvesters exhibiting a nonlinear stiffness function, usually characterized 
by a cubic stiffness function. Thus, it is worthwhile to investigate how often – in the sample set characterized here –  this 
architecture might provide a significant benefit over a standard linear harvester design. As previously mentioned, such 
nonlinear harvesters may provide a potential improvement in cases with multiple dominant frequencies or a single moving 
frequency. Hoffman14 showed a significant improvement for a single moving frequency using a monostable or bistable 
nonlinear harvester. In the same study, a bi-stable harvester showed very little improvement for multiple stationary 
frequencies. However, nonlinear harvester architectures represented a significant improvement for an input consisting of 
band-limited noise. Daqaq15 has shown that the shape of the potential function does not affect the power that can be 
harvested from white noise. Therefore, it is reasonable to conclude that the categories where a significant improvement 
could be made from a nonlinear harvester are single dominant nonstationary frequency, filtered noise, and multiple 
dominant stationary frequencies. Taken together, these comprise approximately 53% of the total signals. It should be 
noted, however, that such nonlinear structures have a strong amplitude dependence and the majority of signals analyzed 
have shifting amplitudes. Thus, the real percentage of signals for which a nonlinear design would represent an 
improvement over a linear design will be somewhat lower. 

4.2  Study Limitations and Future Work 

There are numerous limitations to the study: 

Small number of useful signals. The majority of the signals obtained from the NiPS database appeared to be of such low 
quality that they were deemed invalid for analysis; nearly 2/3 of the database was rejected for this reason. 

Uncertainty in measured data. Of the signal data that appeared to be useful to the study, the majority were measured using 
an iPhone as the data acquisition system. This raises several concerns as to the validity of the data; namely, it is unknown 
if the uploader is qualified to be making careful measurements of the vibration signals, the iPhone sampling rate is limited 
to 100Hz in the database, there are no specifications regarding the recording conditions (mounting and placement of the 
iPhone, events that occurred during recording, etc.), the iPhone model used for recording is unknown, and at least one 
source 20 states that the maximum resolution of a particular iPhone accelerometer model is 18mg. Thus, many of the signals 
that passed the crude quality check may not be valid representations of the phenomena that was intended for recording. 

Subjectivity of analysis. One inescapable consequence of having a human visually examine spectrograms for the purpose 
of signal classification is the subjectivity of the resulting classifications; although efforts were put in place to prevent 
obvious misclassification (such as fixing the definition of a particular signal classification before classification began), in 
many cases, two observers may disagree on the classification of a particular signal. For example, a signal that appears to 
be characterized by a single dominant frequency embedded in noise to one observer may appear to be better characterized 
as filtered noise to another observer.  

Future work would include a comparison of the maximum power output of various VEH architectures subjected to the 
signals in the study, with a particular interest in determining if specific VEH architectures are well suited to signals with 
specific classifications. In this way, it can be determined whether a given VEH architecture is well suited for particular 
application, or if complex VEH architectures are capable of outperforming simpler (e.g. linear) architectures when the 
input signal falls under a specific classification. 

5. CONCLUSIONS 

333 vibration signals from the NiPS Laboratory “Real Vibration” have been characterized and classified by key vibration 
characteristics. A primary goal of this classification is to provide insight into the design of vibration energy harvesters 
(VEHs). Determining the prevalence of vibration signals for which standard VEH architectures are optimal is of particular 
interest. The vibrations were classified by source (i.e. machine, animal, vehicle, structure, unknown). The signals were 
further characterized by the number of dominant frequencies, whether these frequencies are stationary or move with time, 
or whether the signal was best characterized by noise, either broadband or band limited. Although VEH simulations for 
the different categories have not been performed, an initial qualitative analysis would indicate that a standard linear 
oscillator harvester is likely the best design for at least 23% of the signals and that harvesters with the common cubic 
nonlinear stiffness function could offer an improvement at most 53% of the time; this is an initial conclusion and more 
study is required to refine this result. 
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